Expectation-Maximization Algorithm with Local Adaptivity

被引:4
|
作者
Leung, Shingyu [1 ]
Liang, Gang [2 ]
Solna, Knut [3 ]
Zhao, Hongkai [3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2009年 / 2卷 / 03期
关键词
expectation-maximization algorithm; Gaussian mixture model; posterior probability; local adaptivity; image segmentation; KERNEL DENSITY-ESTIMATION; STATISTICAL-ANALYSIS; SHAPE; SEGMENTATION; KNOWLEDGE; MOTION; SELECTION; TEXTURE; PRIORS; SPACE;
D O I
10.1137/080731530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop an expectation-maximization algorithm with local adaptivity for image segmentation and classification. The key idea of our approach is to combine global statistics extracted from the Gaussian mixture model or other proper statistical models with local statistics and geometrical information, such as local probability distribution, orientation, and anisotropy. The combined information is used to design an adaptive local classification strategy that improves the robustness of the algorithm and also keeps fine features in the image. The proposed methodology is flexible and can be easily generalized to deal with other inferred information/quantities and statistical methods/models.
引用
收藏
页码:834 / 857
页数:24
相关论文
共 50 条
  • [1] The expectation-maximization algorithm
    Moon, TK
    IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [2] Degenerate expectation-maximization algorithm for local dimension reduction
    Lin, XD
    Zhu, Y
    CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 259 - 268
  • [3] Quantum expectation-maximization algorithm
    Miyahara, Hideyuki
    Aihara, Kazuyuki
    Lechner, Wolfgang
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [4] THE NOISY EXPECTATION-MAXIMIZATION ALGORITHM
    Osoba, Osonde
    Mitaim, Sanya
    Kosko, Bart
    FLUCTUATION AND NOISE LETTERS, 2013, 12 (03):
  • [5] FastLOF: An Expectation-Maximization based Local Outlier Detection Algorithm
    Goldstein, Markus
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2282 - 2285
  • [6] The Expectation-Maximization Algorithm: Gaussian Case The EM Algorithm
    Iatan, Iuliana F.
    2010 INTERNATIONAL CONFERENCE ON NETWORKING AND INFORMATION TECHNOLOGY (ICNIT 2010), 2010, : 590 - 593
  • [7] ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS
    Barazandeh, Babak
    Razaviyayn, Meisam
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 61 - 65
  • [8] Image restoration with a generalized expectation-maximization algorithm
    Kudo, Hiroyuki
    Saito, Tsuneo
    Systems and Computers in Japan, 1993, 24 (12): : 43 - 53
  • [9] An expectation-maximization algorithm working on data summary
    Jin, HD
    Leung, KS
    Wong, ML
    COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2002, : 221 - 226
  • [10] Wiener extrapolation of sequences and the expectation-maximization algorithm
    ArtesRodriguez, A
    FigueirasVidal, AR
    IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (09) : 260 - 262