Criteria for Geometric and Algebraic Transience for Discrete-Time Markov Chains

被引:1
作者
Mao, Yong-Hua [1 ]
Song, Yan-Hong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
基金
中国国家自然科学基金;
关键词
Markov chain; Geometric transience; Algebraic transience; First return time; Last exit time; Drift condition; SUBGEOMETRIC RATES; CONVERGENCE; ERGODICITY; PROPERTY;
D O I
10.1007/s10959-021-01105-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present new criteria for geometric and algebraic transience for discrete-time transient Markov chains on general state spaces, based on the moment of the last exit time, the modified moment of the first return time and the drift condition for the transition kernel. These criteria turn out to be more convenient to use, supplementing and extending conditions introduced by Mao and Song [Stochastic Process. Appl. 124 (2014) 1648-1678]. Several applications are presented including discrete queueing Markov chains, Galton-Watson branching processes, downwardly skip-free chains, unrestricted random walks and autoregressive models of order one.
引用
收藏
页码:1974 / 2008
页数:35
相关论文
共 50 条
  • [31] Sliding mode control for discrete-time descriptor Markovian jump systems with two Markov chains
    Qingling Zhang
    Jinghao Li
    Zhongyan Song
    Optimization Letters, 2018, 12 : 1199 - 1213
  • [32] Sliding mode control for discrete-time descriptor Markovian jump systems with two Markov chains
    Zhang, Qingling
    Li, Jinghao
    Song, Zhongyan
    OPTIMIZATION LETTERS, 2018, 12 (06) : 1199 - 1213
  • [33] Discrete-time singularly perturbed Markov chains: Aggregation, occupation measures, and switching diffusion limit
    Yin, G
    Zhang, Q
    Badowski, G
    ADVANCES IN APPLIED PROBABILITY, 2003, 35 (02) : 449 - 476
  • [34] Equivalences of Geometric Ergodicity of Markov Chains
    Gallegos-Herrada, Marco A.
    Ledvinka, David
    Rosenthal, Jeffrey S.
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (02) : 1230 - 1256
  • [35] GEOMETRIC ERGODICITY AND HYBRID MARKOV CHAINS
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1997, 2 : 13 - 25
  • [36] Matrix Roots and Embedding Conditions for Three-State Discrete-Time Markov Chains with Complex Eigenvalues
    Marie-Anne Guerry
    Communications in Mathematics and Statistics, 2022, 10 : 435 - 450
  • [37] Matrix Roots and Embedding Conditions for Three-State Discrete-Time Markov Chains with Complex Eigenvalues
    Guerry, Marie-Anne
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 435 - 450
  • [38] Discrete-time Markov chains with two-time scales and a countable state space: limit results and queueing applications
    Yin, G.
    Zhang, Hanqin
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2008, 80 (04) : 339 - 369
  • [39] ALGEBRAIC MULTIGRID FOR MARKOV CHAINS
    De Sterck, H.
    Manteuffel, T. A.
    Mccormick, S. F.
    Miller, K.
    Ruge, J.
    Sanders, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02) : 544 - 562
  • [40] Stability of Markov modulated discrete-time dynamic systems
    Yin, G
    Zhang, Q
    AUTOMATICA, 2003, 39 (08) : 1339 - 1351