Criteria for Geometric and Algebraic Transience for Discrete-Time Markov Chains

被引:1
作者
Mao, Yong-Hua [1 ]
Song, Yan-Hong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
基金
中国国家自然科学基金;
关键词
Markov chain; Geometric transience; Algebraic transience; First return time; Last exit time; Drift condition; SUBGEOMETRIC RATES; CONVERGENCE; ERGODICITY; PROPERTY;
D O I
10.1007/s10959-021-01105-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present new criteria for geometric and algebraic transience for discrete-time transient Markov chains on general state spaces, based on the moment of the last exit time, the modified moment of the first return time and the drift condition for the transition kernel. These criteria turn out to be more convenient to use, supplementing and extending conditions introduced by Mao and Song [Stochastic Process. Appl. 124 (2014) 1648-1678]. Several applications are presented including discrete queueing Markov chains, Galton-Watson branching processes, downwardly skip-free chains, unrestricted random walks and autoregressive models of order one.
引用
收藏
页码:1974 / 2008
页数:35
相关论文
共 50 条
  • [11] Entropy and Large Deviations for Discrete-Time Markov Chains
    G. Fayolle
    A. de La Fortelle
    Problems of Information Transmission, 2002, 38 (4) : 354 - 367
  • [12] Spectral gap and convergence rate for discrete-time Markov chains
    Mao, Yong Hua
    Song, Yan Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (10) : 1949 - 1962
  • [13] Exponential bounds for discrete-time singularly perturbed Markov chains
    Zhang, Q
    Yin, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) : 645 - 662
  • [14] Symbolic counterexample generation for large discrete-time Markov chains
    Jansen, Nils
    Wimmer, Ralf
    Abraham, Erika
    Zajzon, Barna
    Katoen, Joost-Pieter
    Becker, Bernd
    Schuster, Johann
    SCIENCE OF COMPUTER PROGRAMMING, 2014, 91 : 90 - 114
  • [15] On Transience Conditions for Markov Chains
    S. G. Foss
    D. È. Denisov
    Siberian Mathematical Journal, 2001, 42 : 364 - 371
  • [16] On transience conditions for Markov chains
    Foss, SG
    Denisov, DÉ
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (02) : 364 - 371
  • [17] Hilbert evolution algebras and its connection with discrete-time Markov chains
    Vidal, Sebastian J.
    Cadavid, Paula
    Rodriguez, Pablo M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03) : 883 - 894
  • [18] Hilbert evolution algebras and its connection with discrete-time Markov chains
    Sebastian J. Vidal
    Paula Cadavid
    Pablo M. Rodriguez
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 883 - 894
  • [19] Variational formulas for asymptotic variance of general discrete-time Markov chains
    Huang, Lu-Jing
    Mao, Yong-Hua
    BERNOULLI, 2023, 29 (01) : 300 - 322
  • [20] STABILITY OF MARKOVIAN PROCESSES .1. CRITERIA FOR DISCRETE-TIME CHAINS
    MEYN, SP
    TWEEDIE, RL
    ADVANCES IN APPLIED PROBABILITY, 1992, 24 (03) : 542 - 574