Toward High Temperature Sodium Metal Batteries via Regulating the Electrolyte/ Electrode Interfacial Chemistries

被引:72
作者
Zheng, Xueying [1 ]
Cao, Zhang [2 ,3 ]
Gu, Zhenyi [4 ]
Huang, Liqiang [1 ]
Sun, Zhonghui [5 ]
Zhao, Tong [1 ]
Yu, Sijie [1 ]
Wu, Xing-Long [4 ]
Luo, Wei [1 ]
Huang, Yunhui [6 ]
机构
[1] Tongji Univ, Inst New Energy Vehicles, Shanghai Key Lab Dev & Applicat Metall Funct Mat, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Soochow Univ, Coll Energy, Suzhou 215006, Jiangsu, Peoples R China
[3] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Northeast Normal Univ, Minist Educ, Key Lab UV Light Emitting Mat & Technol, Changchun 130024, Jilin, Peoples R China
[5] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Guangdong, Peoples R China
[6] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
来源
ACS ENERGY LETTERS | 2022年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
LI-ION; FLUORINATED ELECTROLYTES; LITHIUM; BEHAVIOR; INTERPHASES; EFFICIENCY; ANODES; LAYER; SAFE; PERFORMANCE;
D O I
10.1021/acsenergylett.2c01100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable batteries based on sodium metal anodes (SMAs) are endowed with much higher energy density than traditional sodium-ion batteries. However, the use of SMAs brings intrinsic challenges of dendrite growth and situation can be further exacerbated at high temperature (>55 degrees C, HT). Here, we resolve such "HT-challenge" by formulating a thermally stable sulfolane (SL)-based electrolyte that regulates the electrode/electrolyte interfacial chemistries. Besides rapid Na anode passivation enabled by fluoroethylene carbonate (FEC) molecules, a nitrile-based 1,3,6-hexanetricarbonitrile (HTCN) cosolvent is simultaneously introduced, whose three electron-rich -C equivalent to N groups interact with the electropositive metal ions of Na3V2(PO4)2O2F, shielding away solvent attacks occurring at the cathode interface. As a result, we realize a high capacity retention (91.7% after 500 cycles at 1 C) for the Na/Na3V2(PO4)2O2F cell at 60 degrees C, with a high average carbon equivalent (CE) of similar to 99.6%. Even at 80 degrees C, the cell still delivers similar to 89.1% of its initial capacity after 100 cycles, whereas the control sample fails rapidly within 30 cycles.
引用
收藏
页码:2032 / 2042
页数:11
相关论文
共 57 条
[11]   High-Rate and Long-Cycle Cathode for Sodium-Ion Batteries: Enhanced Electrode Stability and Kinetics via Binder Adjustment [J].
Gu, Zhen-Yi ;
Sun, Zhong-Hui ;
Guo, Jin-Zhi ;
Zhao, Xin-Xin ;
Zhao, Chen-De ;
Li, Shao-Fang ;
Wang, Xiao-Tong ;
Li, Wen-Hao ;
Heng, Yong-Li ;
Wu, Xing-Long .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (42) :47580-47589
[12]   Stable Dendrite-Free Sodium-Sulfur Batteries Enabled by a Localized High-Concentration Electrolyte [J].
He, Jiarui ;
Bhargav, Amruth ;
Shin, Woochul ;
Manthiram, Arumugam .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (48) :20241-20248
[13]   The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium [J].
He, Mingfu ;
Guo, Rui ;
Hobold, Gustavo M. ;
Gao, Haining ;
Gallant, Betar M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (01) :73-79
[14]   Ion association tailoring SEI composition for Li metal anode protection [J].
He, Yitao ;
Zhang, Yaohui ;
Yu, Peng ;
Ding, Fei ;
Li, Xifei ;
Wang, Zhihong ;
Lv, Zhe ;
Wang, Xianjie ;
Liu, Zhiguo ;
Huang, Xiqiang .
JOURNAL OF ENERGY CHEMISTRY, 2020, 45 :1-6
[15]   Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes [J].
Hobold, Gustavo M. ;
Lopez, Jeffrey ;
Guo, Rui ;
Minafra, Nicolo ;
Banerjee, Abhik ;
Shirley Meng, Y. ;
Shao-Horn, Yang ;
Gallant, Betar M. .
NATURE ENERGY, 2021, 6 (10) :951-960
[16]   Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature [J].
Holoubek, John ;
Liu, Haodong ;
Wu, Zhaohui ;
Yin, Yijie ;
Xing, Xing ;
Cai, Guorui ;
Yu, Sicen ;
Zhou, Hongyao ;
Pascal, Tod A. ;
Chen, Zheng ;
Liu, Ping .
NATURE ENERGY, 2021, 6 (03) :303-313
[17]   In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field [J].
Hong, Yi-Sheng ;
Li, Na ;
Chen, Haosen ;
Wang, Peng ;
Song, Wei-Li ;
Fang, Daining .
ENERGY STORAGE MATERIALS, 2018, 11 :118-126
[18]   Cycling a Lithium Metal Anode at 90 °C in a Liquid Electrolyte [J].
Hou, Li-Peng ;
Zhang, Xue-Qiang ;
Li, Bo-Quan ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) :15109-15113
[19]   Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple [J].
Hu, Libo ;
Zhang, Zhengcheng ;
Amine, Khalil .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 35 :76-79
[20]   Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application [J].
Huang, Yongxin ;
Zhao, Luzi ;
Li, Li ;
Xie, Man ;
Wu, Feng ;
Chen, Renjie .
ADVANCED MATERIALS, 2019, 31 (21)