Hamiltonian decompositions of Cayley graphs on Abelian groups of odd order

被引:20
作者
Liu, JQ
机构
关键词
D O I
10.1006/jctb.1996.0007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Alspach has conjectured that any 2k-regular connected Cayley graph cay(A, S) on a finite abelian group A can be decomposed into k hamiltonian cycles. In this paper, the conjecture is shown to be true if S = {s(1), s(2), ..., s(k)} is a minimal generating set of an abelian group A of odd order (where a generating set S of a group G is minimal if no proper subset of S can generate G). (C) 1996 Academic Press, Inc.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 10 条