Universal stress protein-like gene from mulberry enhances abiotic stress tolerance in Escherichia coli and transgenic tobacco cells

被引:13
|
作者
Dhanyalakshmi, K. H. [1 ]
Nataraja, K. N. [1 ]
机构
[1] Univ Agr Sci Bangalore, Dept Crop Physiol, GKVK Campus, Bangalore 560065, Karnataka, India
关键词
universal stress proteins; mulberry; abiotic stress; cellular tolerance; DROUGHT TOLERANCE; ARABIDOPSIS; PLANTS; PREDICTION; GROWTH;
D O I
10.1111/plb.13311
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Universal stress proteins (USPs) are a conserved group of proteins initially identified and characterized in bacteria. USPs are induced under multiple stresses, and are important for stress acclimation. We cloned a USP-like gene designated as MaUSP1-like from mulberry and expressed in bacteria and tobacco to examine its relevance in abiotic stress tolerance. Escherichia coli and tobacco cells expressing MaUSP1-like gene were exposed to different abiotic stresses, and cell survival and growth was recorded to assess the stress effects. MaUSP1-like gene conferred tolerance to E. coli cells under NaCl-induced salt stress, PEG8000-induced desiccation stress, cadmium chloride-induced heavy metal stress, and heat stress. Overexpression of MaUSP1-like sustained cell division and growth in tobacco cells under salt stress. The results demonstrate that MaUSP1-like gene is capable of conferring cellular level tolerance in both prokaryotic and eukaryotic systems, under abiotic stress. The finding opened up an option to argue that maintenance of cellular level tolerance is crucial for sustenance of growth under stress and cellular level tolerance can be improved by overexpressing genes like USPs.
引用
收藏
页码:1190 / 1194
页数:5
相关论文
共 50 条
  • [31] Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco
    Weidong Wang
    Yuhua Wang
    Yulin Du
    Zhen Zhao
    Xujun Zhu
    Xin Jiang
    Zaifa Shu
    Ying Yin
    Xinghui Li
    Plant Cell Reports, 2014, 33 : 1829 - 1841
  • [32] Pearl Millet Aquaporin Gene PgPIP2;6 Improves Abiotic Stress Tolerance in Transgenic Tobacco
    Reddy, Palakolanu Sudhakar
    Dhaware, Mahamaya G.
    Sivasakthi, Kaliamoorthy
    Divya, Kummari
    Nagaraju, Marka
    Cindhuri, Katamreddy Sri
    Kishor, Polavarapu Bilhan Kavi
    Bhatnagar-Mathur, Pooja
    Vadez, Vincent
    Sharma, Kiran K.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [33] A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato
    Kang, Chen
    Zhai, Hong
    Xue, Luyao
    Zhao, Ning
    He, Shaozhen
    Liu, Qingchang
    PLANT SCIENCE, 2018, 272 : 243 - 254
  • [34] Overexpression of a Wheat Aquaporin Gene, TaAQP8, Enhances Salt Stress Tolerance in Transgenic Tobacco
    Hu, Wei
    Yuan, Qianqian
    Wang, Yan
    Cai, Rui
    Deng, Xiaomin
    Wang, Jie
    Zhou, Shiyi
    Chen, Mingjie
    Chen, Lihong
    Huang, Chao
    Ma, Zhanbing
    Yang, Guangxiao
    He, Guangyuan
    PLANT AND CELL PHYSIOLOGY, 2012, 53 (12) : 2127 - 2141
  • [35] Overexpression of Potato PYL16 Gene in Tobacco Enhances the Transgenic Plant Tolerance to Drought Stress
    Yao, Panfeng
    Zhang, Chunli
    Bi, Zhenzhen
    Liu, Yuhui
    Liu, Zhen
    Wei, Jia
    Su, Xinglong
    Bai, Jiangping
    Cui, Junmei
    Sun, Chao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [36] A Versatile Peroxidase from the Fungus Bjerkandera adusta Confers Abiotic Stress Tolerance in Transgenic Tobacco Plants
    Sofia Hernandez-Bueno, Nancy
    Suarez-Rodriguez, Ramon
    Balcazar-Lopez, Edgar
    Luis Folch-Mallol, Jorge
    Augusto Ramirez-Trujillo, Jose
    Iturriaga, Gabriel
    PLANTS-BASEL, 2021, 10 (05):
  • [37] Overexpression of tomato WHIRLY protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco
    Zhao, S. -Y.
    Wang, G. -D.
    Zhao, W. -Y.
    Zhang, S.
    Kong, F. -Y.
    Dong, X. -C.
    Meng, Q. -W.
    BIOLOGIA PLANTARUM, 2018, 62 (01) : 55 - 68
  • [38] Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5
    Moriwaki, Teppei
    Yamamoto, Yujirou
    Aida, Takehiko
    Funahashi, Tatsuya
    Shishido, Toshiyuki
    Asada, Masataka
    Prodhan, Shamusul Haque
    Komamine, Atsushi
    Motohashi, Tsuyoshi
    PLANT BIOTECHNOLOGY REPORTS, 2008, 2 (01) : 41 - 46
  • [39] Expression of baculovirus anti-apoptotic p35 gene in tobacco enhances tolerance to abiotic stress
    Zhihua Wang
    Jianhua Song
    Yong Zhang
    Baoyu Yang
    Shiyun Chen
    Biotechnology Letters, 2009, 31 : 585 - 589
  • [40] Expression of baculovirus anti-apoptotic p35 gene in tobacco enhances tolerance to abiotic stress
    Wang, Zhihua
    Song, Jianhua
    Zhang, Yong
    Yang, Baoyu
    Chen, Shiyun
    BIOTECHNOLOGY LETTERS, 2009, 31 (04) : 585 - 589