Towards an understanding of photosynthetic acclimation

被引:486
作者
Walters, RG [1 ]
机构
[1] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
关键词
acclimation; environmental conditions; light; photodamage; photosynthetic apparatus;
D O I
10.1093/jxb/eri060
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
It has long been recognized that higher plants vary the composition and organization of the photosynthetic apparatus in response to the prevailing environmental conditions, with particular attention being paid to the responses to incident light. Under high light conditions there are increases in the amounts of photosystems, electron transport and ATP synthase complexes, and enzymes of the Calvin-Benson cycle; conversely, under low light there is an increase in the relative amounts of light-harvesting complexes (LHC) and in the stacking of thylakoid membranes to form grana. It is believed that these changes are of adaptive significance, and in a few instances evidence has been provided that this is indeed the case; an increase in photosynthetic capacity reduces susceptibility to photodamage, while changes in photosystem stoichiometry serve to optimize light utilization. By contrast, the potential benefit to the plant of other changes in chloroplast composition, such as in the levels of LHC, is far less clear. It is also believed that redox signals derived from photosynthetic electron transport play an important regulatory role in acclimation. However, while there is convincing evidence that such redox signals modulate the expression of many plastidic and nuclear genes encoding photosynthetic components, there is little to demonstrate that such changes are responsible for regulating chloroplast composition. This review discusses the evidence that particular aspects of acclimation are advantageous to the plant, and highlights the significant gaps in our understanding of the mechanisms underlying acclimation.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 94 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues [J].
Anderson, JM ;
Chow, WS ;
Park, YI .
PHOTOSYNTHESIS RESEARCH, 1995, 46 (1-2) :129-139
[3]   Reduced levels of cytochrome bf complex in transgenic tobacco leads to marked photochemical reduction of the plastoquinone pool, without significant change in acclimation to irradiance [J].
Anderson, JM ;
Price, GD ;
Chow, WS ;
Hope, AB ;
Badger, MR .
PHOTOSYNTHESIS RESEARCH, 1997, 53 (2-3) :215-227
[4]  
Anderson JM., 1987, PHOTOINHIBITION, P1
[5]   Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness [J].
Andersson, J ;
Wentworth, M ;
Walters, RG ;
Howard, CA ;
Ruban, AV ;
Horton, P ;
Jansson, S .
PLANT JOURNAL, 2003, 35 (03) :350-361
[6]   Adaptation of tobacco plants to elevated CO2:: influence of leaf age on changes in physiology, redox states and NADP-malate dehydrogenase activity [J].
Backhausen, JE ;
Scheibe, R .
JOURNAL OF EXPERIMENTAL BOTANY, 1999, 50 (334) :665-675
[7]   Acclimation of Arabidopsis thaliana to the light environment:: the relationship between photosynthetic function and chloroplast composition [J].
Bailey, S ;
Horton, P ;
Walters, RG .
PLANTA, 2004, 218 (05) :793-802
[8]   Acclimation of Arabidopsis thaliana to the light environment:: the existence of separate low light and high light responses [J].
Bailey, S ;
Walters, RG ;
Jansson, S ;
Horton, P .
PLANTA, 2001, 213 (05) :794-801
[10]   COMPARATIVE PHOTOSYNTHESIS OF SUN AND SHADE PLANTS [J].
BOARDMAN, NK .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1977, 28 :355-377