Background: Elevation in central venous pressure (CVP) plays a fundamental pathophysiologic role in Fontan circulation. Because there is no sub-pulmonary ventricle in this system, CVP also provides the driving force for pulmonary blood flow. We hypothesized that this would make Fontan patients more susceptible to even low-level elevation in pulmonary vascular resistance index (PVRI), resulting in greater systemic venous congestion and adverse outcomes. Methods: Adult Fontan patients and controls without congenital heart disease undergoing clinical evaluation that included cardiac catheterization and echocardiography were examined retrospectively. Outcomes including all-cause mortality and the development of Fontan associated diseases (FAD, defined as protein losing enteropathy, cirrhosis, heart failure hospitalization, arrhythmia, or thromboembolism) were assessed from longitudinal assessment. Results: As compared to controls (n=82), Fontan patients (n=164) were younger (36 vs 45 years, p < 0.001), more likely to be on anticoagulation or antiplatelet therapy, and more likely to have atrial arrhythmia or cirrhosis. There was a strong correlation between CVP and PVRI in the Fontan group (r = 0.79, p < 0.001), but there was no such relationship in controls. Elevated PVRI identified patients at increased risk for FAD (HR 1.92, 95% CI 1.39-2.41, p = 0.01), and composite endpoint of FAD and/or death (HR 1.89, 95% CI 1.32-2.53, p = 0.01) per 1 WU*m(2) increment. Conclusions: Systemic venous congestion, which is the primary factor in the pathogenesis of FAD and death, is related to even low-level abnormalities in pulmonary vascular function. Multicenter studies are needed to determine whether interventions targeting pulmonary vascular structure and function can improve outcomes in the Fontan population. (c) 2018 Elsevier B.V. All rights reserved.