Plasma-activated catalytic formation of ammonia from N2?H2: influence of temperature and noble gas addition

被引:16
作者
Ben Yaala, M. [1 ,2 ]
Scherrer, D-F [1 ]
Saeedi, A. [1 ]
Moser, L. [1 ]
Soni, K. [1 ]
Steiner, R. [1 ]
De Temmerman, G. [3 ]
Oberkofler, M. [4 ]
Marot, L. [1 ]
Meyer, E. [1 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] Univ Strathclyde, SUPA, Dept Biomed Engn, Glasgow G1 1QE, Lanark, Scotland
[3] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[4] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
基金
瑞士国家科学基金会;
关键词
plasma-activated catalysis; ammonia formation; thermal decomposition; x-ray photoelectron spectroscopy; noble gas admixture; tritium inventory; catalytic effect; MICROWAVE-DISCHARGE; H-2; PRODUCTION; DECOMPOSITION; SURFACE; NH; HE;
D O I
10.1088/1741-4326/ab519c
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the ITER tokamak, injection of nitrogen is foreseen to decrease the heat loads on the divertor surfaces. However, once dissociated, nitrogen atoms react with hydrogen isotopes to form ammonia isotopologues. The formation of tritiated ammonia may pose some issues with regards to tritium inventory and operation duty cycle. In this paper, we report a study of the effect of three parameters of relevance for the fusion environment on the ammonia production, including the presence of a catalytic surface, sample temperature and noble gas addition. Results of ammonia formation from N-2/H-2 RF plasma (both with and without tungsten or stainless steel surface) show the importance of the presence of a catalyst in the ammonia formation process. By increasing the temperature of the W samples up to 1270 K, ammonia formation demonstrated a continuous decrease due to two major factors. For high temperatures above 650 K and 830 K, for stainless steel and W, respectively, the reduction results from the thermal decomposition of ammonia. For the lower temperature range, the temperature rise leads to the formation of more stable nitrides that do not tend to react further with hydrogen to form NH2 and NH3. Interestingly, the addition of helium or argon to the N-2/H-2 plasma show opposite effects on the ammonia production. He effectively decreases the percentage of NH3 by acting as a barrier for the surface processes. On the other hand, argon impacts the plasma processes more, probably by increasing the active nitrogen species in the plasma and as a consequence the percentage of formed ammonia.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Absolute density measurements of ammonia synthetized in N-2-H-2 mixture discharges [J].
Amorim, J ;
Baravian, G ;
Sultan, G .
APPLIED PHYSICS LETTERS, 1996, 68 (14) :1915-1917
[2]  
[Anonymous], 2017, PLASMA CATALYST ASSI
[3]   H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review [J].
Bell, T. E. ;
Torrente-Murciano, L. .
TOPICS IN CATALYSIS, 2016, 59 (15-16) :1438-1457
[4]   Quartz micro-balance and in situ XPS study of the adsorption and decomposition of ammonia on gold, tungsten, boron, beryllium and stainless steel surfaces [J].
Ben Yaala, M. ;
Marot, L. ;
Steiner, R. ;
Moser, L. ;
De Temmerman, G. ;
Porosnicu, C. ;
Lungu, C. P. ;
Oberkofler, M. ;
Meyer, E. .
NUCLEAR FUSION, 2018, 58 (10)
[5]   Plasma-assisted catalytic formation of ammonia in N2-H2 plasma on a tungsten surface [J].
Ben Yaala, Marwa ;
Saeedi, Arsalan ;
Scherrer, Dan-Felix ;
Moser, Lucas ;
Steiner, Roland ;
Zutter, Marco ;
Oberkofler, Martin ;
De Temmerman, Gregory ;
Marot, Laurent ;
Meyer, Ernst .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (30) :16623-16633
[6]   A volume-averaged model of nitrogen-hydrogen plasma chemistry to investigate ammonia production in a plasma-surface interaction device [J].
Body, Thomas ;
Cousens, Samuel ;
Kirby, Juliet ;
Corr, Cormac .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (07)
[7]   Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst [J].
Boisen, A ;
Dahl, S ;
Norskov, JK ;
Christensen, CH .
JOURNAL OF CATALYSIS, 2005, 230 (02) :309-312
[8]   Neutral and ion chemistry in low pressure dc plasmas of H2/N2 mixtures: routes for the efficient production of NH3 and NH4+ [J].
Carrasco, Esther ;
Jimenez-Redondo, Miguel ;
Tanarro, Isabel ;
Herrero, Victor J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19561-19572
[9]   Influence of residence time and helium addition in the ammonia formation on tungsten walls in N2 - H2 glow discharge plasmas [J].
de Castro, A. ;
Alegre, D. ;
Tabares, F. L. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :399-404
[10]   Evolution of nitrogen concentration and ammonia production in N2-seeded H-mode discharges at ASDEX Upgrade [J].
Drenik, A. ;
Laguardia, L. ;
McDermott, R. ;
Meisl, G. ;
Neu, R. ;
Oberkofler, M. ;
Pawelec, E. ;
Pitts, R. A. ;
Puetterich, T. ;
Reichbauer, T. ;
Rohde, V. ;
Seibt, M. ;
De Temmerman, G. ;
Zaplotnik, R. ;
Aguiam, D. ;
Aho-Mantila, L. ;
Angioni, C. ;
Arden, N. ;
Parra, R. Arredondo ;
Asunta, O. ;
de Baar, M. ;
Balden, M. ;
Behler, K. ;
Bergmann, A. ;
Bernardo, J. ;
Bernert, M. ;
Beurskens, M. ;
Biancalani, A. ;
Bilato, R. ;
Birkenmeier, G. ;
Bobkov, V. ;
Bock, A. ;
Bogomolov, A. ;
Bolzonella, T. ;
Boswirth, B. ;
Bottereau, C. ;
Bottino, A. ;
van den Brand, H. ;
Brezinsek, S. ;
Brida, D. ;
Brochard, F. ;
Bruhn, C. ;
Buchanan, J. ;
Buhler, A. ;
Burckhart, A. ;
Cambon-Silva, D. ;
Camenen, Y. ;
Carvalho, P. ;
Carrasco, G. ;
Cazzaniga, C. .
NUCLEAR FUSION, 2019, 59 (04)