Weak solutions for fractional differential equations in nonreflexive Banach spaces via Riemann-Pettis integrals

被引:14
作者
Agarwal, Ravi P. [1 ]
Lupulescu, Vasile [2 ]
O'Regan, Donal [3 ]
ur Rahman, Ghaus [4 ,5 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX USA
[2] Constantin Brancusi Univ, Republ 1, Targu Jiu 210152, Romania
[3] Natl Univ Ireland Univ Coll Galway, Sch Math Stat & Appl Math, Galway, Ireland
[4] Univ Swat, Khyber Pakhtunkhwa, Pakistan
[5] GC Univ Lahore, Abdus Salam Sch Math Sci, Lahore 54000, Pakistan
关键词
Weak solution; Riemann-Pettis integral; Caputo weak derivative; fractional differential equation; CALCULUS; THEOREM;
D O I
10.1002/mana.201400010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to develop fractional calculus for vector-valued functions using the weak Riemann integral. Also, we establish the existence of weak solutions for a class of fractional differential equations with fractional weak derivatives. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:395 / 409
页数:15
相关论文
共 41 条
[1]   Fractional calculus and fractional differential equations in nonreflexive Banach spaces [J].
Agarwal, Ravi P. ;
Lupulescu, Vasile ;
O'Regan, Donal ;
Rahman, Ghaus Ur .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) :59-73
[2]   Multi-term fractional differential equations in a nonreflexive Banach space [J].
Agarwal, Ravi P. ;
Lupulescu, Vasile ;
O'Regan, Donal ;
ur Rahman, Ghaus .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[3]   A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative [J].
Agarwal, Ravi P. ;
Belmekki, Mohammed ;
Benchohra, Mouffak .
ADVANCES IN DIFFERENCE EQUATIONS, 2009, :1-47
[4]  
Alexiewicz A., 1951, STUD MATH, V12, P125
[5]  
Ambrosetti A., 1967, Rend. Sem. Mat. Univ. Padova, V39, P349
[6]  
[Anonymous], 2006, THEORY APPL FRACTION
[7]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[8]  
[Anonymous], 1977, B MATH SOC MATH SCI
[9]  
ARENDT W, 2001, MONOGR MATH, V96
[10]  
Bazhlekova E., 2001, Ph.D. Thesis