Highly Conductive, Capacitive, Flexible and Soft Electrodes Based on a 3D Graphene-Nanotube-Palladium Hybrid and Conducting Polymer

被引:19
作者
Kim, Hyun-Jun [1 ]
Randriamahazaka, Hyacinthe [2 ]
Oh, Il-Kwon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, KAIST Inst NanoCentury, Sch Mech Aerosp & Syst Engn, Graphene Res Ctr, Taejon 305701, South Korea
[2] Univ Paris Diderot, Sorbonne Paris Cite, UMR CNRS 7086, ITODYS, F-75205 Paris 13, France
基金
新加坡国家研究基金会;
关键词
ALL-SOLID-STATE; SUPERCAPACITORS; IMPEDANCE;
D O I
10.1002/smll.201401613
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The article reports on a highly conductive, capacitive, flexible and soft electrode based on three-dimensional graphene-nanotube-palladium nanostructures and Poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS) conducting polymer. The PEDOT: PSS conducting polymer was used not only to intimately connect the graphene-based 3D flakes, but also to enhance the electronic transport of the original electrode without additional electrical connection parts such as a metallic current collector. Two different viewpoints can be found in the literature. Some authors have explained that non-ideal behavior is related to the roughness of the electrode. In such a theory, an increased surface roughness leads to a current density distribution along the surface and thus a distribution of the electrical double-layer charging times.
引用
收藏
页码:5023 / 5029
页数:7
相关论文
共 38 条
[1]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295
[2]   Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) :17615-17624
[3]   On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy [J].
Cordoba-Torres, P. ;
Mesquita, T. J. ;
Devos, O. ;
Tribollet, B. ;
Roche, V. ;
Nogueira, R. P. .
ELECTROCHIMICA ACTA, 2012, 72 :172-178
[4]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[5]   Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance [J].
Du, Feng ;
Yu, Dingshan ;
Dai, Liming ;
Ganguli, S. ;
Varshney, V. ;
Roy, A. K. .
CHEMISTRY OF MATERIALS, 2011, 23 (21) :4810-4816
[6]   Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement [J].
Fan, Jinchen ;
Shi, Zixing ;
Zhang, Lu ;
Wang, Jialiang ;
Yin, Jie .
NANOSCALE, 2012, 4 (22) :7046-7055
[7]   A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors [J].
Fan, Zhuangjun ;
Yan, Jun ;
Zhi, Linjie ;
Zhang, Qiang ;
Wei, Tong ;
Feng, Jing ;
Zhang, Milin ;
Qian, Weizhong ;
Wei, Fei .
ADVANCED MATERIALS, 2010, 22 (33) :3723-+
[8]  
Fricke R, 1932, PHILOS MAG, V14, P310
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Electro-active graphene-Nafion actuators [J].
Jung, Jung-Hwan ;
Jeon, Jin-Han ;
Sridhar, Vadahanambi ;
Oh, Il-Kwon .
CARBON, 2011, 49 (04) :1279-1289