On the Kuznetsov equation and higher order nonlinear acoustics equations

被引:0
|
作者
Söderholm, LH [1 ]
机构
[1] Royal Inst Technol, Dept Mech, SE-10044 Stockholm, Sweden
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Compressible flow of a Newtonian fluid is studied in the fully nonlinear approximation and to lowest order in the dissipation, neglecting cross terms Ma . Kn (Ma is the Mach number, Kn the Knudsen number). An initially vorticity free flow is shown to remain vorticity free. An acoustic equation is derived. If Kn = Ma(n), the equation obtained is correct to order Ma(n). For n = 1, it reduces to the Kuznetsov equation.
引用
收藏
页码:133 / 136
页数:4
相关论文
共 50 条
  • [31] The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrodinger equation
    Zhang, Jin-Liang
    Wang, Ming-Liang
    Li, Xiang-Zheng
    PHYSICS LETTERS A, 2006, 357 (03) : 188 - 195
  • [33] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [34] Dynamics of a Higher Order Nonlinear Rational Difference Equation
    Atawna, S.
    Ismail, E. S.
    Hashim, I.
    INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012), 2012, 1482 : 309 - 314
  • [35] Dynamics of a Higher-Order Nonlinear Difference Equation
    Tang, Guo-Mei
    Hu, Lin-Xia
    Jia, Xiu-Mei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [36] Solution of the duffing equation with a higher order nonlinear term
    Nohara, Ben T.
    Arimoto, Akio
    Theoretical and Applied Mechanics Japan, 2011, 59 : 133 - 141
  • [37] Exact Solutions of the Higher Order Nonlinear Schrodinger Equation
    Luo, Tianqi
    Huang, Xin
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 19 - 22
  • [38] Persistence of solutions to higher order nonlinear Schrodinger equation
    Carvajal, X.
    Neves, W.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) : 2214 - 2236
  • [39] Solution of the Duffing Equation with a Higher Order Nonlinear Term
    Nohara, Ben T.
    Arimoto, Akio
    THEORETICAL AND APPLIED MECHANICS JAPAN, 2011, 59 : 133 - 141
  • [40] Collapse for the higher-order nonlinear Schrodinger equation
    Achilleos, V.
    Diamantidis, S.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Karachalios, N. I.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 57 - 68