Rings which are Baer or quasi-Baer modulo a radical

被引:0
作者
Ryan, C. Edward [1 ]
机构
[1] San Diego State Univ Imperial Valley Campus, Dept Math, Calexico, CA 92231 USA
关键词
Baer ring; idempotent; Morita invariant; quasi-Baer ring; radical;
D O I
10.1080/00927872.2021.1924185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Baer and quasi-Baer rings are important classes of algebraic objects, and their properties have roots in analysis. In this paper, we investigate rings R such that R/rho(R) is Baer or quasi-Baer, where rho(R) is either the Jacobson radical or the prime radical of R. Preliminary characterizations and results are obtained; in particular, we show that the property of R/P(R) being quasi-Baer is a Morita invariant.
引用
收藏
页码:4557 / 4564
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 2013, EXTENSIONS RINGS MOD, DOI DOI 10.1007/978-0-387-92716-9
[2]   THE FACTOR RING OF A QUASI-BAER RING BY ITS PRIME RADICAL [J].
Birkenmeier, Gary F. ;
Kim, Jin Yong ;
Park, Jae Keol .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (01) :157-165
[3]   Hulls of semiprime rings with applications to C*-algebras [J].
Birkenmeier, Gary F. ;
Park, Jae Keol ;
Rizvi, S. Tariq .
JOURNAL OF ALGEBRA, 2009, 322 (02) :327-352
[4]   Triangular matrix representations [J].
Birkenmeier, GF ;
Heatherly, HE ;
Kim, JY ;
Park, JK .
JOURNAL OF ALGEBRA, 2000, 230 (02) :558-595
[5]   A GENERALIZATION OF FPF RINGS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (04) :855-884
[6]   Triangular matrix representations of ring extensions [J].
Birkenmeier, GF ;
Park, JK .
JOURNAL OF ALGEBRA, 2003, 265 (02) :457-477
[7]   IDEMPOTENTS AND COMPLETELY SEMIPRIME IDEALS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (06) :567-580
[8]   TWISTED MATRIX UNITS SEMIGROUP ALGEBRAS [J].
CLARK, WE .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) :417-&
[9]  
Jacobson N., 1956, STRUCTURE RINGS AM M, V37
[10]  
Kaplansky I., 1968, RINGS OPERATORS