Modeling Poisson variables with positive spatial dependence

被引:60
作者
Kaiser, MS [1 ]
Cressie, N [1 ]
机构
[1] IOWA STATE UNIV SCI & TECHNOL, DEPT STAT, AMES, IA 50011 USA
关键词
auto-model; Poisson distribution; spatial dependence; Winsorization;
D O I
10.1016/S0167-7152(97)00041-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson auto-model is a natural vehicle for modeling data that consist of small counts and may exhibit dependence, frequently spatial dependence. Unfortunately, it is not possible to model positive dependence with a regular Poisson auto-model. We develop a model that allows positive dependencies in multivariate count data by specifying conditional distributions as Winsorized Poisson probability mass functions. This model may be used to incorporate either positive or negative dependencies among the variables. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:423 / 432
页数:10
相关论文
共 9 条
[1]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[2]  
CHOW YS, 1988, PROBABILITY THEORY, DOI DOI 10.1007/978-1-4684-0504-0
[3]   EMPIRICAL BAYES ESTIMATES OF AGE-STANDARDIZED RELATIVE RISKS FOR USE IN DISEASE MAPPING [J].
CLAYTON, D ;
KALDOR, J .
BIOMETRICS, 1987, 43 (03) :671-681
[4]   SPATIAL DATA-ANALYSIS OF REGIONAL COUNTS [J].
CRESSIE, N ;
READ, TRC .
BIOMETRICAL JOURNAL, 1989, 31 (06) :699-719
[5]  
Cressie N., 1993, STAT SPATIAL DATA
[6]   SPATIAL INTERACTION BETWEEN NEIGHBORING COUNTIES - CANCER MORTALITY DATA IN VALENCIA (SPAIN) [J].
FERRANDIZ, J ;
LOPEZ, A ;
LLOPIS, A ;
MORALES, M ;
TEJERIZO, ML .
BIOMETRICS, 1995, 51 (02) :665-678
[7]  
GALAMBOS J, 1988, ENCY STAT SCI, P355
[8]  
Hammersley J. M., 1971, MARKOV FIELDS FINITE
[9]  
Taylor AE., 1983, ADV CALCULUS