Mixed finite element domain decomposition for nonlinear parabolic problems

被引:9
|
作者
Kim, MY [1 ]
Park, EJ
Park, J
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Yonsei Univ, Inst Math Sci, Seoul 120749, South Korea
关键词
nonlinear parabolic problems; mixed finite elements; error estimate; parallel domain decomposition method;
D O I
10.1016/S0898-1221(00)85016-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fully discrete mixed finite element method is considered to approximate the solution of a nonlinear second-order parabolic problem. A massively parallel iterative procedure based on domain decomposition technique is presented to solve resulting nonlinear algebraic equations. Robin type boundary conditions are used to transmit information between subdomains. The convergence of the iteration for each time step is demonstrated. Optimal-order error estimates are also derived. Numerical examples are given. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1061 / 1070
页数:10
相关论文
共 50 条
  • [31] FICTITIOUS DOMAIN MIXED FINITE-ELEMENT APPROACH FOR A CLASS OF OPTIMAL SHAPE DESIGN-PROBLEMS
    HASLINGER, J
    KLARBRING, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (04): : 435 - 450
  • [32] Composite Finite Element Approximation for Parabolic Problems in Nonconvex Polygonal Domains
    Pramanick, Tamal
    Sinha, Rajen Kumar
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 361 - 378
  • [33] Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media
    Woodward, CS
    Dawson, CN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 701 - 724
  • [34] Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods
    Daversin-Catty, Cecile
    Richardson, Chris N.
    Ellingsrud, Ada J.
    Rognes, Marie E.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (04):
  • [35] On the stability of mixed polygonal finite element formulations in nonlinear analysis
    Sauren, Bjorn
    Klinkel, Sven
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (09)
  • [36] A NEW MIXED FINITE-ELEMENT FOR THE STOKES AND ELASTICITY PROBLEMS
    FARHLOUL, M
    FORTIN, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) : 971 - 990
  • [37] Superconvergence of mixed finite element methods for optimal control problems
    Chen, Yanping
    MATHEMATICS OF COMPUTATION, 2008, 77 (263) : 1269 - 1291
  • [38] Finite Element Error Estimation for Parabolic Optimal Control Problems with Pointwise Observations
    Liang, Dongdong
    Gong, Wei
    Xie, Xiaoping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01): : 165 - 199
  • [39] New decomposition of shape functions spaces of mixed finite element methods
    Bendali, A
    Raynaud, N
    Thomas, JM
    APPLIED MATHEMATICS LETTERS, 1996, 9 (01) : 33 - 38
  • [40] Space-time finite element approximation of parabolic optimal control problems
    Gong, W.
    Hinze, M.
    Zhou, Z. J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (02) : 111 - 145