Single-particle digitization strategy for quantum computation of a φ4 scalar field theory

被引:51
作者
Barata, Joao [1 ]
Mueller, Niklas [2 ]
Tarasov, Andrey [3 ,4 ]
Venugopalan, Raju [5 ]
机构
[1] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, E-15782 Galicia, Spain
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[4] SUNY Stony Brook, Joint BNL SBU Ctr Frontiers Nucl Sci CFNS, Stony Brook, NY 11794 USA
[5] Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
INELASTIC ELECTRON-PROTON; SCATTERING; ALGORITHMS; TIME; QCD; RENORMALIZATION; SIMULATION; DEPENDENCE; SCHWINGER; EVOLUTION;
D O I
10.1103/PhysRevA.103.042410
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Motivated by the parton picture of high-energy quantum chromodynamics, we develop a single-particle digitization strategy for the efficient quantum simulation of relativistic scattering processes in a d + 1-dimensional scalar phi(4) field theory. We work out quantum algorithms for initial state preparation, time evolution, and final state measurements. We outline a nonperturbative renormalization strategy in this single-particle framework.
引用
收藏
页数:23
相关论文
共 182 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]   Electron-Ion Collider: The next QCD frontier [J].
Accardi, A. ;
Albacete, J. L. ;
Anselmino, M. ;
Armesto, N. ;
Aschenauer, E. C. ;
Bacchetta, A. ;
Boer, D. ;
Brooks, W. K. ;
Burton, T. ;
Chang, N. -B. ;
Deng, W. -T. ;
Deshpande, A. ;
Diehl, M. ;
Dumitru, A. ;
Dupre, R. ;
Ent, R. ;
Fazio, S. ;
Gao, H. ;
Guzey, V. ;
Hakobyan, H. ;
Hao, Y. ;
Hasch, D. ;
Holt, R. ;
Horn, T. ;
Huang, M. ;
Hutton, A. ;
Hyde, C. ;
Jalilian-Marian, J. ;
Klein, S. ;
Kopeliovich, B. ;
Kovchegov, Y. ;
Kumar, K. ;
Kumericki, K. ;
Lamont, M. A. C. ;
Lappi, T. ;
Lee, J. -H. ;
Lee, Y. ;
Levin, E. M. ;
Lin, F. -L. ;
Litvinenko, V. ;
Ludlam, T. W. ;
Marquet, C. ;
Meziani, Z. -E. ;
McKeown, R. ;
Metz, A. ;
Milner, R. ;
Morozov, V. S. ;
Mueller, A. H. ;
Muller, B. ;
Mueller, D. .
EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (09)
[3]   Lattice calculation of parton distributions [J].
Alexandrou, Constantia ;
Cichy, Krzysztof ;
Drach, Vincent ;
Garcia-Ramos, Elena ;
Hadjiyiannakou, Kyriakos ;
Jansen, Karl ;
Steffens, Fernanda ;
Wiese, Christian .
PHYSICAL REVIEW D, 2015, 92 (01)
[4]  
Andersson B., 1998, THE LUND MODEL
[5]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[6]   Universal quantum computation by scattering in the Fermi-Hubbard model [J].
Bao, Ning ;
Hayden, Patrick ;
Salton, Grant ;
Thomas, Nathaniel .
NEW JOURNAL OF PHYSICS, 2015, 17
[7]  
Bapat A, 2019, QUANTUM INF COMPUT, V19, P424
[8]   JET STRUCTURE AND INFRARED-SENSITIVE QUANTITIES IN PERTURBATIVE QCD [J].
BASSETTO, A ;
CIAFALONI, M ;
MARCHESINI, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 100 (04) :201-272
[9]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[10]  
Bauer CW, 2001, PHYS REV D, V63, DOI 10.1103/PhysRevD.63.114020