Single-particle digitization strategy for quantum computation of a φ4 scalar field theory

被引:43
作者
Barata, Joao [1 ]
Mueller, Niklas [2 ]
Tarasov, Andrey [3 ,4 ]
Venugopalan, Raju [5 ]
机构
[1] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, E-15782 Galicia, Spain
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[4] SUNY Stony Brook, Joint BNL SBU Ctr Frontiers Nucl Sci CFNS, Stony Brook, NY 11794 USA
[5] Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
INELASTIC ELECTRON-PROTON; SCATTERING; ALGORITHMS; TIME; QCD; RENORMALIZATION; SIMULATION; DEPENDENCE; SCHWINGER; EVOLUTION;
D O I
10.1103/PhysRevA.103.042410
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Motivated by the parton picture of high-energy quantum chromodynamics, we develop a single-particle digitization strategy for the efficient quantum simulation of relativistic scattering processes in a d + 1-dimensional scalar phi(4) field theory. We work out quantum algorithms for initial state preparation, time evolution, and final state measurements. We outline a nonperturbative renormalization strategy in this single-particle framework.
引用
收藏
页数:23
相关论文
共 182 条
  • [1] Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
    Abrams, DS
    Lloyd, S
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (24) : 5162 - 5165
  • [2] Electron-Ion Collider: The next QCD frontier
    Accardi, A.
    Albacete, J. L.
    Anselmino, M.
    Armesto, N.
    Aschenauer, E. C.
    Bacchetta, A.
    Boer, D.
    Brooks, W. K.
    Burton, T.
    Chang, N. -B.
    Deng, W. -T.
    Deshpande, A.
    Diehl, M.
    Dumitru, A.
    Dupre, R.
    Ent, R.
    Fazio, S.
    Gao, H.
    Guzey, V.
    Hakobyan, H.
    Hao, Y.
    Hasch, D.
    Holt, R.
    Horn, T.
    Huang, M.
    Hutton, A.
    Hyde, C.
    Jalilian-Marian, J.
    Klein, S.
    Kopeliovich, B.
    Kovchegov, Y.
    Kumar, K.
    Kumericki, K.
    Lamont, M. A. C.
    Lappi, T.
    Lee, J. -H.
    Lee, Y.
    Levin, E. M.
    Lin, F. -L.
    Litvinenko, V.
    Ludlam, T. W.
    Marquet, C.
    Meziani, Z. -E.
    McKeown, R.
    Metz, A.
    Milner, R.
    Morozov, V. S.
    Mueller, A. H.
    Muller, B.
    Mueller, D.
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (09)
  • [3] Lattice calculation of parton distributions
    Alexandrou, Constantia
    Cichy, Krzysztof
    Drach, Vincent
    Garcia-Ramos, Elena
    Hadjiyiannakou, Kyriakos
    Jansen, Karl
    Steffens, Fernanda
    Wiese, Christian
    [J]. PHYSICAL REVIEW D, 2015, 92 (01):
  • [4] Andersson B., 1998, THE LUND MODEL
  • [5] [Anonymous], 2013, SCATTERING THEORY WA
  • [6] Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories
    Banerjee, D.
    Boegli, M.
    Dalmonte, M.
    Rico, E.
    Stebler, P.
    Wiese, U. -J.
    Zoller, P.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [7] Universal quantum computation by scattering in the Fermi-Hubbard model
    Bao, Ning
    Hayden, Patrick
    Salton, Grant
    Thomas, Nathaniel
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [8] Bapat A, 2019, QUANTUM INF COMPUT, V19, P424
  • [9] JET STRUCTURE AND INFRARED-SENSITIVE QUANTITIES IN PERTURBATIVE QCD
    BASSETTO, A
    CIAFALONI, M
    MARCHESINI, G
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 100 (04): : 201 - 272
  • [10] Hybrid Quantum-Classical Approach to Correlated Materials
    Bauer, Bela
    Wecker, Dave
    Millis, Andrew J.
    Hastings, Matthew B.
    Troyer, Matthias
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):