Atomic-Precision Tailoring of Au-Ag Core-Shell Composite Nanoparticles for Direct Electrochemical-Plasmonic Hydrogen Evolution in Water Splitting

被引:25
|
作者
Mo, Jiaying [1 ]
Barbosa, Eduardo C. M. [1 ,2 ]
Wu, Simson [1 ]
Li, Yiyang [1 ]
Sun, Yuancheng [1 ]
Xiang, Weikai [3 ]
Li, Tong [3 ]
Pu, Shengda [4 ]
Robertson, Alex [4 ]
Wu, Tai-sing [5 ,6 ]
Soo, Yun-liang [5 ,6 ]
Alves, Tiago, V [7 ]
Camargo, Pedro H. C. [2 ,8 ]
Kuo, Winson [9 ]
Tsang, Shik Chi Edman [1 ]
机构
[1] Univ Oxford, Dept Chem, Wolfson Catalysis Ctr, Oxford OX1 3QR, England
[2] Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508000 Sao Paulo, SP, Brazil
[3] Ruhr Univ Bochum, Inst Mat, Univ Str 150, D-44801 Bochum, Germany
[4] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[5] Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan
[6] Natl Tsing Hua Univ, Dept Phys, Hsinchu 300, Taiwan
[7] Univ Fed Bahia, Inst Quim, Dept Fis Quim, Rua Barao Jeremoabo 147, BR-4017011 Salvador, BA, Brazil
[8] Univ Helsinki, Dept Chem, AI Virtasen Aukio 1, Helsinki 00560, Finland
[9] Texas A&M Univ, Mat Characterizat Facil, 3471 TAMU, College Stn, TX 77843 USA
基金
巴西圣保罗研究基金会;
关键词
core-shell design; electrochemistry; hydrogen evolution; localized surface plasmon resonance; ENHANCED RAMAN-SCATTERING; HOT-ELECTRON; SURFACE; PHOTOCATALYST; HETEROSTRUCTURE; GENERATION; SEPARATION; EFFICIENCY;
D O I
10.1002/adfm.202102517
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditionally, bandgap materials are a prerequisite to photocatalysis since they can harness a reasonable range of the solar spectrum. However, the high impedance across the bandgap and the low concentration of intrinsic charge carriers have limited their energy conversion. By contrast, metallic nanoparticles possess a sea of free electrons that can effectively promote the transition to the excited state for reactions. Here, an atomic layer of a bimetallic concoction of silver-gold shells is precisely fabricated onto an Au core via a sonochemical dispersion approach to form a core-shell of Au-Ag that exploits the wide availability of excited states of Ag while maintaining an efficient localized surface plasmon resonance (LSPR) of Au. Catalytic results demonstrate that this mix of Ag and Au can convert solar energy to hydrogen at high efficiency with an increase of 112.5% at an optimized potential of -0.5 V when compared to light-off conditions under the electrochemical LSPR. This outperforms the commercial Pt catalysts by 62.1% with a hydrogen production rate of 1870 mu mol g(-1) h(-1) at room temperature. This study opens a new route for tuning the range of light capture of hydrogen evolution reaction catalysts using fabricated core-shell material through the combination of LSPR with electrochemical means.
引用
收藏
页数:11
相关论文
共 16 条
  • [1] Atomic-Precision Tailoring of Au–Ag Core–Shell Composite Nanoparticles for Direct Electrochemical-Plasmonic Hydrogen Evolution in Water Splitting
    Mo, Jiaying
    Barbosa, Eduardo C. M.
    Wu, Simson
    Li, Yiyang
    Sun, Yuancheng
    Xiang, Weikai
    Li, Tong
    Pu, Shengda
    Robertson, Alex
    Wu, Tai-sing
    Soo, Yun-liang
    Alves, Tiago V.
    Camargo, Pedro H. C.
    Kuo, Winson
    Tsang, Shik Chi Edman
    Advanced Functional Materials, 2021, 31 (30)
  • [2] Tailoring the Shape of Anisotropic Core-Shell Au-Ag Nanoparticles in Dimethyl Sulfoxide
    Haidar, Israa
    Day, Axelle
    Decorse, Philippe
    Lau-Truong, Stephanie
    Chevillot-Biraud, Alexandre
    Aubard, Jean
    Felidj, Nordin
    Boubekeur-Lecaque, Leila
    CHEMISTRY OF MATERIALS, 2019, 31 (08) : 2741 - 2749
  • [3] Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures
    Erwin, William R.
    Coppola, Andrew
    Zarick, Holly F.
    Arora, Poorva
    Miller, Kevin J.
    Bardhan, Rizia
    NANOSCALE, 2014, 6 (21) : 12626 - 12634
  • [4] Magneto-plasmonic Co@M (M = Au/Ag/Au-Ag) core-shell nanoparticles for biological imaging and therapeutics
    Bhatia, Pradeep
    Verma, S. S.
    Sinha, M. M.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 251
  • [5] Widely Adjustable and Quasi-Reversible Electrochromic Device Based on Core-Shell Au-Ag Plasmonic Nanoparticles
    Feng, Ziying
    Jiang, Chen
    He, Yang
    Chu, Sheng
    Chu, Guang
    Peng, Rufang
    Li, Dongdong
    ADVANCED OPTICAL MATERIALS, 2014, 2 (12): : 1174 - 1180
  • [6] Au-Ag core-shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for l-cysteine detection in Lens culinaris (lentils)
    Saha, Anushree
    Khalkho, Beeta Rani
    Deb, Manas Kanti
    RSC ADVANCES, 2021, 11 (33) : 20380 - 20390
  • [7] Atomic level tailoring of the electrocatalytic activity of Au-Pt core-shell nanoparticles with controllable Pt layers toward hydrogen evolution reaction
    Shi, Yi
    Zhai, Ting-Ting
    Zhou, Yue
    Xu, Wei-Xuan
    Yang, Dong-Rui
    Wang, Feng-Bin
    Xia, Xing-Hua
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 819 : 442 - 446
  • [8] Spectroscopic evidence of a core-shell structure in the earlier formation stages of Au-Ag nanoparticles by pulsed laser ablation in water
    Compagnini, Giuseppe
    Messina, Elena
    Puglisi, Orazio
    Cataliotti, Rosario Sergio
    Nicolosi, Valeria
    CHEMICAL PHYSICS LETTERS, 2008, 457 (4-6) : 386 - 390
  • [9] Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles
    Dzimitrowicz, Anna
    Jamroz, Piotr
    Nyk, Marcin
    Pohl, Pawel
    MATERIALS, 2016, 9 (04):
  • [10] Green synthesis, characterization of Au-Ag core-shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies
    Kirubha, E.
    Palanisamy, P. K.
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2014, 5 (04)