Stability estimate for an inverse problem for the magnetic Schrodinger equation from the Dirichlet-to-Neumann map

被引:34
作者
Bellassoued, Mourad [1 ]
Choulli, Mourad [2 ,3 ]
机构
[1] Univ Carthage, Dept Math, Fac Sci Bizerte, Jarzouna Bizerte 7021, Tunisia
[2] Univ Paul Verlaine Metz, Lab LMAM, UMR 7122, F-57045 Metz, France
[3] CNRS, F-57045 Metz, France
关键词
Stability estimate; Schrodinger inverse problem; Magnetic field; Dirichlet-to-Neumann map; HYPERBOLIC DIRICHLET; SCATTERING PROBLEM; GLOBAL UNIQUENESS; WAVE-EQUATION; COEFFICIENTS; OPERATOR;
D O I
10.1016/j.jfa.2009.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of stability estimate of the inverse problem of determining the magnetic field entering the magnetic Schrodinger equation in a bounded smooth domain of R-n with input Dirichlet data, from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichlet-to-Neumann map associated to the solutions of the magnetic Schrodinger equation. We prove in dimension n >= 2 that the knowledge of the Dirichlet-to-Neumann map for the magnetic Schrodinger equation measured on the boundary determines uniquely the magnetic field and we prove a Holder-type stability in determining the magnetic field induced by the magnetic potential. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 195
页数:35
相关论文
共 46 条
[1]  
Avdonin S., 2005, Journal of Inverse and ILL-Posed Problems, V13, P317, DOI 10.1163/156939405775201718
[2]   Uniqueness and stability in an inverse problem for the Schrodinger equation [J].
Baudouin, L ;
Puel, JP .
INVERSE PROBLEMS, 2002, 18 (06) :1537-1554
[3]   Boundary control in reconstruction of manifolds and metrics (the BC method) [J].
Belishev, MI .
INVERSE PROBLEMS, 1997, 13 (05) :R1-R45
[4]  
Bellassoued M., 2006, Appl. Anal., V85, P1219, DOI [10.1080/00036810600787873, DOI 10.1080/00036810600787873]
[5]  
Bellassoued M., 2004, APPL ANAL, V83, P983
[6]  
BELLASSOUED M, STABILITY ESTIMATE H
[7]   Stability estimate for an inverse problem for the wave equation in a magnetic field [J].
Bellassoued, Mourad ;
Benjoud, Hajer .
APPLICABLE ANALYSIS, 2008, 87 (03) :277-292
[8]   Logarithmic stability in the dynamical inverse problem for the Schrodinger equation by arbitrary boundary observation [J].
Bellassoued, Mourad ;
Choulli, Mourad .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (03) :233-255
[9]  
Bukhgeim A L., 1981, Soviet Mathematics Doklady, V24, P244
[10]   Recovering a potential from partial Cauchy data [J].
Bukhgeim, AL ;
Uhlmann, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :653-668