Floer homology for knots and SU(2)-representations for knot complements and cyclic branched covers

被引:2
作者
Collin, O [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2000年 / 52卷 / 02期
关键词
D O I
10.4153/CJM-2000-013-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
in this article, using 3-orbifolds singular along a knot with underlying space a homology sphere Y-3, the question of existence of non-trivial and non-abelian SU(2)-representations of the fundamental group of cyclic branched covers of Y-3 along a knot is studied. We first use Fleer Homology for knots to derive an existence result of non-abelian SU(2)-representations of the fundamental group of knot complements, for knots with a non-vanishing equivariant signature. This provides information on the existence of non-trivial and non-abelian SU(2)-representations of the fundamental group of cyclic branched covers. We illustrate the method with some examples of knots in S-3.
引用
收藏
页码:293 / 305
页数:13
相关论文
共 23 条
[1]  
AKBULUT S, 1990, CASSONS INVARIANT OR
[2]  
BASS H, 1984, SMITH CONJECTUE
[3]   THE PI-ORBIFOLD GROUP OF A LINK [J].
BOILEAU, M ;
ZIMMERMANN, B .
MATHEMATISCHE ZEITSCHRIFT, 1989, 200 (02) :187-208
[4]   SU(2)-REPRESENTATION SPACES FOR 2-BRIDGE KNOT-GROUPS [J].
BURDE, G .
MATHEMATISCHE ANNALEN, 1990, 288 (01) :103-119
[5]  
COLLIN O, 1997, THESIS U OXFORD
[6]  
COLLIN O, 1997, P KNOTS 96, P201
[7]  
COLLIN O, IN PRESS J DIFFERENT
[8]   REPRESENTING KNOT-GROUPS INTO SL(2, C) [J].
COOPER, D ;
LONG, DD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (02) :547-549
[9]  
Eisenbud D., 1985, 3 DIMENSIONAL LINK T
[10]  
FINTUSHEL R, 1990, P LOND MATH SOC, V61, P109