Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist

被引:89
作者
Meroz, Yasmine [1 ]
Sokolov, Igor M. [2 ]
Klafter, Joseph [1 ,3 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[3] Univ Freiburg, FRIAS, D-79104 Freiburg, Germany
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 01期
关键词
ANOMALOUS SUBDIFFUSION; FRACTIONAL DYNAMICS; RANDOM-WALKS; DIFFUSION;
D O I
10.1103/PhysRevE.81.010101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Single particle trajectories are investigated assuming the coexistence of two subdiffusive processes: diffusion on a fractal structure modeling spatial constraints on motion and heavy-tailed continuous time random walks representing energetic or chemical traps. The particles' mean squared displacement is found to depend on the way the mean is taken: temporal averaging over single-particle trajectories differs from averaging over an ensemble of particles. This is shown to stem from subordinating an ergodic anomalous process to a nonergodic one. The result is easily generalized to the subordination of any other ergodic process (i.e., fractional Brownian motion) to a nonergodic one. For certain parameters the ergodic diffusion on the underlying fractal structure dominates the transport yet displaying ergodicity breaking and aging.
引用
收藏
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 2005, Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems
[2]   Weak ergodicity breaking in the continuous-time random walk [J].
Bel, G ;
Barkai, E .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)
[3]  
Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
[4]  
BLUMEN A, 1984, PHYS REV LETT, V53, P1301, DOI 10.1103/PhysRevLett.53.1301
[5]   Description of diffusive and propagative behavior on fractals -: art. no. 031115 [J].
Campos, D ;
Méndez, V ;
Fort, J .
PHYSICAL REVIEW E, 2004, 69 (03) :031115-1
[6]   Enhanced diffusion in active intracellular transport [J].
Caspi, A ;
Granek, R ;
Elbaum, M .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5655-5658
[7]   FRACTIONAL DIFFUSION EQUATION ON FRACTALS - ONE-DIMENSIONAL CASE AND ASYMPTOTIC-BEHAVIOR [J].
GIONA, M ;
ROMAN, HE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :2093-2105
[8]   Physical nature of bacterial cytoplasm [J].
Golding, I ;
Cox, EC .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[9]   Random time-scale invariant diffusion and transport coefficients [J].
He, Y. ;
Burov, S. ;
Metzler, R. ;
Barkai, E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[10]   FRACTIONAL DYNAMICS, IRREVERSIBILITY AND ERGODICITY BREAKING [J].
HILFER, R .
CHAOS SOLITONS & FRACTALS, 1995, 5 (08) :1475-1484