Generalizability of the Disease State Index Prediction Model for Identifying Patients Progressing from Mild Cognitive Impairment to Alzheimer's Disease

被引:30
作者
Hall, Anette [1 ]
Munoz-Ruiz, Miguel [1 ,2 ]
Mattila, Jussi [3 ]
Koikkalainen, Juha [3 ]
Tsolaki, Magda [4 ]
Mecocci, Patrizia [5 ]
Kloszewska, Iwona [6 ]
Vellas, Bruno [7 ]
Lovestone, Simon [8 ,9 ]
Visser, Pieter Jelle [10 ,11 ]
Lotjonen, Jyrki [3 ]
Soininen, Hilkka [1 ,2 ]
机构
[1] Univ Eastern Finland, Inst Clin Med, Kuopio 70211, Finland
[2] Kuopio Univ Hosp, Dept Neurol, SF-70210 Kuopio, Finland
[3] VIT Tech Res Ctr Finland, Tampere, Finland
[4] Aristotle Univ Thessaloniki, G Papanicolaou Gen Hosp, Memory & Dementia Ctr, Thessaloniki, Greece
[5] Univ Perugia, Inst Gerontol & Geriatr, I-06100 Perugia, Italy
[6] Med Univ Lodz, Lodz, Poland
[7] Univ Toulouse, UMR INSERM, Toulouse, France
[8] Nat Inst Hlth Res, London, England
[9] Kings Coll London, Inst Psychiat, London, England
[10] Vrije Univ Amsterdam Med Ctr, Amsterdam, Netherlands
[11] Maastricht Univ, Maastricht, Netherlands
基金
加拿大健康研究院; 芬兰科学院; 美国国家卫生研究院;
关键词
Alzheimer's disease; computer-assisted diagnosis; dementia; magnetic resonance imaging (MRI); mild cognitive impairment; TENSOR-BASED MORPHOMETRY; VOXEL-BASED MORPHOMETRY; TEMPORAL-LOBE ATROPHY; CORTICAL THICKNESSES; APOE EPSILON-4; CSF BIOMARKERS; MRI; MCI; BRAIN; AD;
D O I
10.3233/JAD-140942
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: The Disease State Index (DSI) prediction model measures the similarity of patient data to diagnosed stable and progressive mild cognitive impairment (MCI) cases to identify patients who are progressing to Alzheimer's disease. Objectives: We evaluated how well the DSI generalizes across four different cohorts: DESCRIPA, ADNI, AddNeuroMed, and the Kuopio MCI study. Methods: The accuracy of the DSI in predicting progression was examined for each cohort separately using 10 x 10-fold cross-validation and for inter-cohort validation using each cohort as a test set for the model built from the other independent cohorts using bootstrapping with 10 repetitions. Altogether 875 subjects were included in the analysis. The analyzed data included a comprehensive set of age and gender corrected magnetic resonance imaging (MRI) features from hippocampal volumetry, multi-template tensor-based morphometry, and voxel-based morphometry as well as Mini-Mental State Examination (MMSE), APOE genotype, and additional cohort specific data from neuropsychological tests and cerebrospinal fluid measurements (CSF). Results: The DSI model was used to classify the patients into stable and progressive MCI cases. AddNeuroMed had the highest classification results of the cohorts, while ADNI and Kuopio MCI exhibited the lowest values. The MRI features alone achieved a good classification performance for all cohorts. For ADNI and DESCRIPA, adding MMSE, APOE genotype, CSF, and neuropsychological data improved the results. Conclusions: The results reveal that the prediction performance of the combined cohort is close to the average of the individual cohorts. It is feasible to use different cohorts as training sets for the DSI, if they are sufficiently similar.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 61 条
[1]   Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment [J].
Aguilar, Carlos ;
Westman, Eric ;
Muehlboeck, J-Sebastian ;
Mecocci, Patrizia ;
Vellas, Bruno ;
Tsolaki, Magda ;
Kloszewska, Iwona ;
Soininen, Hilkka ;
Lovestone, Simon ;
Spenger, Christian ;
Simmons, Andrew ;
Wahlund, Lars-Olof .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2013, 212 (02) :89-98
[2]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[3]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[4]   Modeling the time-course of Alzheimer dementia. [J].
Ashford J.W. ;
Schmitt F.A. .
Current Psychiatry Reports, 2001, 3 (1) :20-28
[5]   Mapping the regional influence of genetics on brain structure variability - A Tensor-Based Morphometry study [J].
Brun, Caroline C. ;
Lepore, Natasha ;
Pennec, Xavier ;
Lee, Agatha D. ;
Barysheva, Marina ;
Madsen, Sarah K. ;
Avedissian, Christina ;
Chou, Yi-Yu ;
de Zubicaray, Greig I. ;
McMahon, Katie L. ;
Wright, Margaret J. ;
Toga, Arthur W. ;
Thompson, Paul M. .
NEUROIMAGE, 2009, 48 (01) :37-49
[6]   Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI:: A longitudinal MRI study [J].
Chételat, G ;
Landeau, B ;
Eustache, F ;
Mézenge, F ;
Viader, F ;
de la Sayette, V ;
Desgranges, B ;
Baron, JC .
NEUROIMAGE, 2005, 27 (04) :934-946
[7]   Automatic temporal lobe atrophy assessment in prodromal AD: Data from the DESCRIPA study [J].
Chincarini, Andrea ;
Bosco, Paolo ;
Gemme, Gianluca ;
Esposito, Mario ;
Rei, Luca ;
Squarcia, Sandro ;
Bellotti, Roberto ;
Minthon, Lennart ;
Frisoni, Giovanni ;
Scheltens, Philip ;
Froelich, Lutz ;
Soininen, Hilkka ;
Visser, Pieter-Jelle ;
Nobili, Flavio .
ALZHEIMERS & DEMENTIA, 2014, 10 (04) :456-467
[8]   Measurements of medial temporal lobe atrophy for prediction of Alzheimer's disease in subjects with mild cognitive impairment [J].
Clerx, Lies ;
van Rossum, Ineke A. ;
Burns, Leah ;
Knol, Dirk L. ;
Scheltens, Philip ;
Verhey, Frans ;
Aalten, Pauline ;
Lapuerta, Pablo ;
van de Pol, Laura ;
van Schijndel, Ronald ;
de Jong, Remko ;
Barkhof, Frederik ;
Wolz, Robin ;
Rueckert, Daniel ;
Bocchetta, Martina ;
Tsolaki, Magdalini ;
Nobili, Flavio ;
Wahlund, Lars-Olaf ;
Minthon, Lennart ;
Froelich, Lutz ;
Hampel, Harald ;
Soininen, Hilkka ;
Visser, Pieter Jelle .
NEUROBIOLOGY OF AGING, 2013, 34 (08) :2003-2013
[9]   Research criteria for the diagnosis of Alzheimer"s disease: revising the NINCDS-ADRDA criteria [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Dekosky, Steven T. ;
Barberger-Gateau, Pascale ;
Cummings, Jeffrey ;
Delocourte, Andre ;
Galasko, Douglas ;
Gauthier, Serge ;
Jicha, Gregory ;
Meguro, Kenichi ;
O'Brien, John ;
Pasquier, Florence ;
Robert, Philippe ;
Rossor, Martin ;
Solloway, Steven ;
Stern, Yaakov ;
Visser, Pieter J. ;
Scheltens, Philip .
LANCET NEUROLOGY, 2007, 6 (08) :734-746
[10]   Revising the definition of Alzheimer's disease: a new lexicon [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Cummings, Jeffrey L. ;
DeKosky, Steven T. ;
Barberger-Gateau, Pascale ;
Delacourte, Andre ;
Frisoni, Giovanni ;
Fox, Nick C. ;
Galasko, Douglas ;
Gauthier, Serge ;
Hampel, Harald ;
Jicha, Gregory A. ;
Meguro, Kenichi ;
O'Brien, John ;
Pasquier, Florence ;
Robert, Philippe ;
Rossor, Martin ;
Salloway, Steven ;
Sarazin, Marie ;
de Souza, Leonardo C. ;
Stern, Yaakov ;
Visser, Pieter J. ;
Scheltens, Philip .
LANCET NEUROLOGY, 2010, 9 (11) :1118-1127