Slow Strain Rate Testing for Hydrogen Embrittlement Susceptibility of Alloy 718 in Substitute Ocean Water

被引:15
作者
LaCoursiere, M. P. [1 ]
Aidun, D. K. [1 ]
Morrison, D. J. [1 ]
机构
[1] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA
关键词
hydrogen embrittlement; nickel-based superalloy; slow strain rate testing; NICKEL-BASED SUPERALLOY; CRACKING; FRACTURE; PRECIPITATION; DISLOCATIONS; DEFORMATION; PLASTICITY; TRANSPORT; BEHAVIOR; GAMMA'';
D O I
10.1007/s11665-017-2675-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hydrogen embrittlement susceptibility of near-peak-aged UNS N07718 (Alloy 718) was evaluated by performing slow strain rate tests at room temperature in air and substitute ocean water. Tests in substitute ocean water were accomplished in an environmental cell that enabled in situ cathodic charging under an applied potential of -1.1 V versus SCE. Some specimens were cathodically precharged for 4 or 16 weeks at the same potential in a 3.5 wt.% NaCl-distilled water solution at 50 degrees C. Unprecharged specimens tested in substitute ocean water exhibited only moderate embrittlement with plastic strain to failure decreasing by about 20% compared to unprecharged specimens tested in air. However, precharged specimens exhibited significant embrittlement with plastic strain to failure decreasing by about 70%. Test environment (air or substitute ocean water with in situ charging) and precharge time (4 or 16 weeks) had little effect on the results of the precharged specimens. Fracture surfaces of precharged specimens were typical of hydrogen embrittlement and consisted of an outer brittle ring related to the region in which hydrogen infused during precharging, a finely dimpled transition zone probably related to the region where hydrogen was drawn in by dislocation transport, and a central highly dimpled ductile region. Fracture surfaces of unprecharged specimens tested in substitute ocean water consisted of a finely dimpled outer ring and heavily dimpled central region typical of ductile fracture.
引用
收藏
页码:2337 / 2345
页数:9
相关论文
共 49 条
[1]  
[Anonymous], 2009, 6A718 API
[2]  
[Anonymous], 2015, 6ACRA API
[3]  
[Anonymous], 2013, D1141 ASTM INT
[4]  
[Anonymous], 2011, TM0198 NACE INT
[5]  
[Anonymous], 2013, G129 ASTM INT
[6]  
Bastien P., 1951, P 1 WORLD MET C ASM, P535
[7]  
BEACHEM CD, 1972, METALL TRANS, V3, P437
[8]   HYDROGEN-ENHANCED LOCALIZED PLASTICITY - A MECHANISM FOR HYDROGEN-RELATED FRACTURE [J].
BIRNBAUM, HK ;
SOFRONIS, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2) :191-202
[9]   Recent advances on hydrogen embrittlement of structural materials [J].
Dadfarnia, Mohsen ;
Nagao, Akihide ;
Wang, Shuai ;
Martin, May L. ;
Somerday, Brian P. ;
Sofronis, Petros .
INTERNATIONAL JOURNAL OF FRACTURE, 2015, 196 (1-2) :223-243
[10]   Modeling hydrogen transport by dislocations [J].
Dadfarnia, Mohsen ;
Martin, May L. ;
Nagao, Akihide ;
Sofronis, Petros ;
Robertson, Ian M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2015, 78 :511-525