High-κ dielectrics for advanced carbon-nanotube transistors and logic gates

被引:820
作者
Javey, A
Kim, H
Brink, M
Wang, Q
Ural, A
Guo, J
McIntyre, P
McEuen, P
Lundstrom, M
Dai, HJ [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat769
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (similar to25) zirconium oxide thin-films (similar to8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S similar to 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S m(-1) (12 muS per tube) and 3,000 cm(2) V-1 s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S similar to 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 39 条
[21]   Quantum interference and ballistic transmission in nanotube electron waveguides [J].
Kong, J ;
Yenilmez, E ;
Tombler, TW ;
Kim, W ;
Dai, HJ ;
Laughlin, RB ;
Liu, L ;
Jayanthi, CS ;
Wu, SY .
PHYSICAL REVIEW LETTERS, 2001, 87 (10) :1-106801
[22]   Atomic layer deposition (ALD):: from precursors to thin film structures [J].
Leskelä, M ;
Ritala, M .
THIN SOLID FILMS, 2002, 409 (01) :138-146
[23]   Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes [J].
Li, YM ;
Kim, W ;
Zhang, YG ;
Rolandi, M ;
Wang, DW ;
Dai, HJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (46) :11424-11431
[24]   Fabry-Perot interference in a nanotube electron waveguide [J].
Liang, WJ ;
Bockrath, M ;
Bozovic, D ;
Hafner, JH ;
Tinkham, M ;
Park, H .
NATURE, 2001, 411 (6838) :665-669
[25]   Single- and multi-wall carbon nanotube field-effect transistors [J].
Martel, R ;
Schmidt, T ;
Shea, HR ;
Hertel, T ;
Avouris, P .
APPLIED PHYSICS LETTERS, 1998, 73 (17) :2447-2449
[26]  
MARTEL R, 2001, IEDM, P159
[27]  
Muller R. S., 1986, DEVICE ELECT INTEGRA
[28]   Thermal stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics [J].
Perkins, CM ;
Triplett, BB ;
McIntyre, PC ;
Saraswat, KC ;
Shero, E .
APPLIED PHYSICS LETTERS, 2002, 81 (08) :1417-1419
[29]   Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors [J].
Radosavljevic, M ;
Freitag, M ;
Thadani, KV ;
Johnson, AT .
NANO LETTERS, 2002, 2 (07) :761-764
[30]  
Ramo S., 1994, FIELDS WAVES COMMUNI, P149