High-κ dielectrics for advanced carbon-nanotube transistors and logic gates

被引:816
作者
Javey, A
Kim, H
Brink, M
Wang, Q
Ural, A
Guo, J
McIntyre, P
McEuen, P
Lundstrom, M
Dai, HJ [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat769
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (similar to25) zirconium oxide thin-films (similar to8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S similar to 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S m(-1) (12 muS per tube) and 3,000 cm(2) V-1 s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S similar to 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 39 条
  • [1] Field-modulated carrier transport in carbon nanotube transistors
    Appenzeller, J
    Knoch, J
    Derycke, V
    Martel, R
    Wind, S
    Avouris, P
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (12) : 126801 - 126801
  • [2] On the performance limits for Si MOSFET's: A theoretical study
    Assad, F
    Ren, ZB
    Vasileska, D
    Datta, S
    Lundstrom, M
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (01) : 232 - 240
  • [3] Logic circuits with carbon nanotube transistors
    Bachtold, A
    Hadley, P
    Nakanishi, T
    Dekker, C
    [J]. SCIENCE, 2001, 294 (5545) : 1317 - 1320
  • [4] Scanned probe microscopy of electronic transport in carbon nanotubes
    Bachtold, A
    Fuhrer, MS
    Plyasunov, S
    Forero, M
    Anderson, EH
    Zettl, A
    McEuen, PL
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (26) : 6082 - 6085
  • [5] Extreme oxygen sensitivity of electronic properties of carbon nanotubes
    Collins, PG
    Bradley, K
    Ishigami, M
    Zettl, A
    [J]. SCIENCE, 2000, 287 (5459) : 1801 - 1804
  • [6] Carbon nanotube inter- and intramolecular logic gates
    Derycke, V
    Martel, R
    Appenzeller, J
    Avouris, P
    [J]. NANO LETTERS, 2001, 1 (09) : 453 - 456
  • [7] Controlling doping and carrier injection in carbon nanotube transistors
    Derycke, V
    Martel, R
    Appenzeller, J
    Avouris, P
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (15) : 2773 - 2775
  • [8] Dresselhaus MS, 2001, CARBON NANOTUBES
  • [9] Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems
    Franklin, NR
    Wang, Q
    Tombler, TW
    Javey, A
    Shim, M
    Dai, HJ
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (05) : 913 - 915
  • [10] Controlled creation of a carbon nanotube diode by a scanned gate
    Freitag, M
    Radosavljevic, M
    Zhou, YX
    Johnson, AT
    Smith, WF
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (20) : 3326 - 3328