Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs

被引:2
作者
Avohou, Remi Cocou [1 ]
机构
[1] 072BP50, Cotonou, Benin
关键词
Tutte polynomial; Bollobas Riordan polynomial; graph polynomial invariant; colored graph; Ribbon graph; Euler characteristic;
D O I
10.3842/SIGMA.2016.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobas-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D >= 3 a modified Euler characteristic with D 2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs.
引用
收藏
页数:23
相关论文
共 18 条
[11]   Colored Group Field Theory [J].
Gurau, Razvan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (01) :69-93
[12]   Lost in translation: topological singularities in group field theory [J].
Gurau, Razvan .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (23)
[13]   Topological Graph Polynomials in Colored Group Field Theory [J].
Gurau, Razvan .
ANNALES HENRI POINCARE, 2010, 11 (04) :565-584
[14]   Topological graph polynomials and quantum field theory Part I: heat kernel theories [J].
Krajewski, Thomas ;
Rivasseau, Vincent ;
Tanasa, Adrian ;
Wang, Zhituo .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (01) :29-82
[15]   Tensor models and embedded Riemann surfaces [J].
Ryan, James P. .
PHYSICAL REVIEW D, 2012, 85 (02)
[16]   Generalization of the Bollobas-Riordan polynomial for tensor graphs [J].
Tanasa, Adrian .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
[17]  
Tutte William T., 1984, ENCY MATH ITS APPL, V21
[18]  
Wolsey LaurenceA., 1998, WIL INT S D, DOI 0-471-28366-5