Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs

被引:2
作者
Avohou, Remi Cocou [1 ]
机构
[1] 072BP50, Cotonou, Benin
关键词
Tutte polynomial; Bollobas Riordan polynomial; graph polynomial invariant; colored graph; Ribbon graph; Euler characteristic;
D O I
10.3842/SIGMA.2016.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobas-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D >= 3 a modified Euler characteristic with D 2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs.
引用
收藏
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1998, GRAD TEXT M
[2]  
Avohou R.C., ARXIV13011987
[3]   On terminal forms for topological polynomials for ribbon graphs: The N-petal flower [J].
Avohou, Remi C. ;
Ben Geloun, Joseph ;
Livine, Etera R. .
EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 :348-366
[4]   Bosonic colored group field theory [J].
Ben Geloun, Joseph ;
Magnen, Jacques ;
Rivasseau, Vincent .
EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (04) :1119-1130
[5]   Linearized group field theory and power-counting theorems [J].
Ben Geloun, Joseph ;
Krajewski, Thomas ;
Magnen, Jacques ;
Rivasseau, Vincent .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (15)
[6]   A polynomial of graphs on surfaces [J].
Bollobás, B ;
Riordan, O .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :81-96
[7]   A polynomial invariant of graphs on orientable surfaces [J].
Bollobás, B ;
Riordan, O .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :513-531
[8]  
Ellis-Monaghan J. A., 2013, SPRINGER BRIEFS MATH
[9]   Colored Tensor Models - a Review [J].
Gurau, Razvan ;
Ryan, James P. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[10]   The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension [J].
Gurau, Razvan .
ANNALES HENRI POINCARE, 2012, 13 (03) :399-423