Curvature of almost quaternion-Hermitian manifolds

被引:2
作者
Martin Cabrera, Francisco [1 ]
Swann, Andrew [2 ]
机构
[1] Univ La Laguna, Dept Fundamental Math, Tenerife 38200, Spain
[2] Univ So Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
关键词
KAHLER-MANIFOLDS; GEOMETRY; TORSION; HYPERKAHLER;
D O I
10.1515/FORUM.2010.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the decomposition of the Riemannian curvature R tensor of an almost quaternion-Hermitian manifold under the action of its structure group Sp(n)Sp (1). Using the minimal connection, we show that most components are determined by the intrinsic torsion xi and its covariant derivative (del) over tilde xi and determine relations between the decompositions of xi circle times xi, (del) over tilde xi and R. We pay particular attention to the behaviour of the Ricci curvature and the q-Ricci curvature.
引用
收藏
页码:21 / 52
页数:32
相关论文
共 19 条
[1]  
[Anonymous], 1989, PITMAN RES NOTES MAT
[2]  
[Anonymous], 1985, GRADUATE TEXTS MATH
[3]  
BERGER M, 1966, CR ACAD SCI A MATH, V262, P1316
[4]  
Berger M., 1955, Bull. Soc. Math. France, V83, P279
[5]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[6]   A Bochner formula for almost-quatemionic-Hermitian structures [J].
Bor, G ;
Lamoneda, LH .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 21 (01) :79-92
[7]   Almost quaternion-Hermitian manifolds [J].
Cabrera, FM .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2004, 25 (03) :277-301
[8]   Einstein metrics via intrinsic or parallel torsion [J].
Cleyton, R ;
Swann, A .
MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (03) :513-528
[9]   ALMOST-HERMITIAN GEOMETRY [J].
FALCITELLI, M ;
FARINOLA, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1994, 4 (03) :259-282