Inference in MCMC step selection models

被引:13
作者
Michelot, Theo [1 ]
Blackwell, Paul G. [2 ]
Chamaille-Jammes, Simon [3 ]
Matthiopoulos, Jason [4 ]
机构
[1] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[2] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
[3] Univ Paul Valery Montpellier, Univ Montpellier, EPHE, CEFE,CNRS,IRD, Montpellier, France
[4] Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Lanark, Scotland
关键词
animal movement; local Gibbs sampler; Markov chain Monte Carlo; MCMC step selection; resource selection function; step selection function; utilization distribution; MOVEMENT; SPACE; BEHAVIOR; DIFFUSION;
D O I
10.1111/biom.13170
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Habitat selection models are used in ecology to link the spatial distribution of animals to environmental covariates and identify preferred habitats. The most widely used models of this type, resource selection functions, aim to capture the steady-state distribution of space use of the animal, but they assume independence between the observed locations of an animal. This is unrealistic when location data display temporal autocorrelation. The alternative approach of step selection functions embed habitat selection in a model of animal movement, to account for the autocorrelation. However, inferences from step selection functions depend on the underlying movement model, and they do not readily predict steady-state space use. We suggest an analogy between parameter updates and target distributions in Markov chain Monte Carlo (MCMC) algorithms, and step selection and steady-state distributions in movement ecology, leading to a step selection model with an explicit steady-state distribution. In this framework, we explain how maximum likelihood estimation can be used for simultaneous inference about movement and habitat selection. We describe the local Gibbs sampler, a novel rejection-free MCMC scheme, use it as the basis of a flexible class of animal movement models, and derive its likelihood function for several important special cases. In a simulation study, we verify that maximum likelihood estimation can recover all model parameters. We illustrate the application of the method with data from a zebra.
引用
收藏
页码:438 / 447
页数:10
相关论文
共 27 条
[1]   Comparative interpretation of count, presence-absence and point methods for species distribution models [J].
Aarts, Geert ;
Fieberg, John ;
Matthiopoulos, Jason .
METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (01) :177-187
[2]  
[Anonymous], 1995, Chapman & Hall/CRCinterdisciplinary statistics series
[3]   Space-use behaviour of woodland caribou based on a cognitive movement model [J].
Avgar, Tal ;
Baker, James A. ;
Brown, Glen S. ;
Hagens, Jevon S. ;
Kittle, Andrew M. ;
Mallon, Erin E. ;
McGreer, Madeleine T. ;
Mosser, Anna ;
Newmaster, Steven G. ;
Patterson, Brent R. ;
Reid, Douglas E. B. ;
Rodgers, Art R. ;
Shuter, Jennifer ;
Street, Garrett M. ;
Thompson, Ian ;
Turetsky, Merritt J. ;
Wiebe, Philip A. ;
Fryxell, John M. .
JOURNAL OF ANIMAL ECOLOGY, 2015, 84 (04) :1059-1070
[4]   Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis [J].
Barnett, Alex H. ;
Moorcroft, Paul R. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (01) :139-159
[5]   Spatial scales of habitat selection decisions: implications for telemetry-based movement modelling [J].
Bastille-Rousseau, Guillaume ;
Murray, Dennis L. ;
Schaefer, James A. ;
Lewis, Mark A. ;
Mahoney, Shane P. ;
Potts, Jonathan R. .
ECOGRAPHY, 2018, 41 (03) :437-443
[6]   The interpretation of habitat preference metrics under use-availability designs [J].
Beyer, Hawthorne L. ;
Haydon, Daniel T. ;
Morales, Juan M. ;
Frair, Jacqueline L. ;
Hebblewhite, Mark ;
Mitchell, Michael ;
Matthiopoulos, Jason .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1550) :2245-2254
[7]   Random diffusion models for animal movement [J].
Blackwell, PG .
ECOLOGICAL MODELLING, 1997, 100 (1-3) :87-102
[8]   Bayesian inference for Markov processes with diffusion and discrete components [J].
Blackwell, PG .
BIOMETRIKA, 2003, 90 (03) :613-627
[9]   Relating populations to habitats using resource selection functions [J].
Boyce, MS ;
McDonald, LL .
TRENDS IN ECOLOGY & EVOLUTION, 1999, 14 (07) :268-272
[10]   Reactive responses of zebras to lion encounters shape their predator-prey space game at large scale [J].
Courbin, Nicolas ;
Loveridge, Andrew J. ;
Macdonald, David W. ;
Fritz, Herve ;
Valeix, Marion ;
Makuwe, Edwin T. ;
Chamaille-Jammes, Simon .
OIKOS, 2016, 125 (06) :829-838