Quantum correlations for quantum key distribution protocols

被引:0
作者
Curty, M [1 ]
Gühnet, O [1 ]
Lewenstein, M [1 ]
Lütkenhaus, N [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys 1, Quantum Informat Theory Grp, D-91058 Erlangen, Germany
来源
QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING | 2004年 / 734卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A necessary precondition for secure quantum key distribution (QKD) is that sender and receiver can prove the presence of entanglement in a quantum state that is effectively distributed between them. In order to deliver this entanglement proof one can use the class of entanglement witness operators that can be constructed from the available measurements results. This criterion provides a necessary and sufficient condition for the existence of quantum correlations even when a quantum state cannot be completely reconstructed. We apply such analysis to three well-known qubit-based QKD protocols, namely the 6-state, the 4-state and the 2-state protocols.
引用
收藏
页码:307 / 310
页数:4
相关论文
共 11 条
[1]  
Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[3]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[4]   Entanglement as a precondition for secure quantum key distribution -: art. no. 217903 [J].
Curty, M ;
Lewenstein, M ;
Lütkenhaus, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :217903-1
[5]  
Curty M., 2004, QUANTPH0409047
[6]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[7]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[8]   Optimization of entanglement witnesses [J].
Lewenstein, M ;
Kraus, B ;
Cirac, JI ;
Horodecki, P .
PHYSICAL REVIEW A, 2000, 62 (05) :052310-052311
[9]   Unconditionally secure key agreement and the intrinsic conditional information [J].
Maurer, UM ;
Wolf, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :499-514
[10]   Separability criterion for density matrices [J].
Peres, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1413-1415