Voltage prediction of a photovoltaic module using artificial neural networks

被引:19
作者
Askarzadeh, Alireza [1 ]
机构
[1] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Energy Management & Optimizat, Kerman, Iran
关键词
photovoltaic module; modeling; artificial neural networks; back propagation; radial basis function; SOLAR-CELL; PARAMETERS IDENTIFICATION; MODEL; ALGORITHM; RADIATION;
D O I
10.1002/etep.1799
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Appropriate performance prediction of photovoltaic (PV) systems plays an important role in simulation, optimization, design, and control. Mathematical models are usually used to predict PV system behavior, but the main disadvantage of mathematical modeling is the dependency of the models parameters to the operating conditions so that a given set of operating conditions needs a corresponding set of parameters. This drawback greatly restricts the models application. This paper investigates the voltage prediction of a PV module as a function of current, temperature, and solar irradiance by using artificial neural networks (ANNs). For this aim, two ANNs including back propagation (BP) and radial basis function networks are constructed, tested, and compared for modeling of an amorphous silicon PV module. The performance of the BP network is investigated by varying number of neurons, and number of hidden layers and training algorithms. Simulation results indicate that the BP network with one hidden layer produces more accurate results than the other studied networks. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1715 / 1725
页数:11
相关论文
共 49 条
[1]   A new estimation approach for determining the I-V characteristics of solar cells [J].
AlRashidi, M. R. ;
AlHajri, M. F. ;
El-Naggar, K. M. ;
Al-Othman, A. K. .
SOLAR ENERGY, 2011, 85 (07) :1543-1550
[2]  
[Anonymous], 1972, NUMERICAL METHODS NO
[3]  
[Anonymous], P IEEE INT JOINT C N
[4]   Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2013, 90 :123-133
[5]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[6]   Parameter identification for solar cell models using harmony search-based algorithms [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2012, 86 (11) :3241-3249
[7]   Pholtovoltaic cell model for the international space station [J].
Ayres, M ;
Wait, DL ;
Weiderholt, M ;
Le, T .
CONFERENCE RECORD OF THE TWENTY-EIGHTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2000, 2000, :1301-1303
[8]   1ST-ORDER AND 2ND-ORDER METHODS FOR LEARNING - BETWEEN STEEPEST DESCENT AND NEWTON METHOD [J].
BATTITI, R .
NEURAL COMPUTATION, 1992, 4 (02) :141-166
[9]   EVALUATION OF SOLAR-CELL PARAMETERS BY NON-LINEAR ALGORITHMS [J].
CABESTANY, J ;
CASTANER, L .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1983, 16 (12) :2547-2558
[10]   Organic and inorganic solar cells parameters evaluation from single I-V plot [J].
Chegaar, M. ;
Nehaoua, N. ;
Bouhemadou, A. .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (06) :1376-1379