Single Ti3+ Ion Catalyzes NO Reduction on Stoichiometric Titanium Oxide Cluster Anions (TiO2)n- (n=1-11)

被引:15
作者
Chen, Jiao-Jiao [1 ,2 ,3 ]
Liu, Yun-Zhu [1 ,2 ,3 ,4 ]
Liu, Qing-Yu [1 ,2 ,3 ]
Li, Xiao-Na [1 ,2 ,3 ]
He, Sheng-Gui [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Chem, State Key Lab Struct Chem Unstable & Stable Specie, Beijing 100190, Peoples R China
[2] Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Res Educ Ctr Excellence Mol Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
single Ti3+ ion; stoichiometric titanium oxide clusters (TiO2)(n)(-); catalytic NO reduction by CO; mass spectrometry; quantum chemical calculations; RUTILE TIO2(110); BAND-GAP; OXIDATION; NANOPARTICLES; TIO2; PHOTOCATALYSIS; ISOPRENE; SURFACES; SITES;
D O I
10.1021/acscatal.2c02006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium dioxide (TiO2) is an important oxide material owing to its extraordinary catalytic reactivity in a wide range of applications. Different species on the surface of TiO2 have been proposed to contribute to its reactivity, while the intriguing catalytic role of a Ti3+ ion has not been substantiated to date. Herein, benefiting from state-of-the-art mass spectrometry and quantum chemical calculations, we demonstrated that an exposed single Ti3+ ion on stoichiometric titanium oxide clusters (TiO2)(n)(-) (n = 1-11) works independently to catalyze NO reduction by CO. The single-electron mechanism to reduce NO into N2O was discovered, and an atomic oxygen radical (O & BULL;-) on products (TiO2)(n)O- that is highly reactive (e.g., in CO oxidation) was created. This finding is pivotal for providing a fundamental strategy to utilize an isolated Ti3+ ion on the surface of TiO2 and points out that this catalytic behavior can be a potential pathway in the atmosphere for pollutant removal.
引用
收藏
页码:8768 / 8775
页数:8
相关论文
共 66 条
[31]   TI3+ DEFECT SITES ON TIO2(110) - PRODUCTION AND CHEMICAL-DETECTION OF ACTIVE-SITES [J].
LU, GQ ;
LINSEBIGLER, A ;
YATES, JT .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (45) :11733-11738
[32]   Photooxidation of Isoprene by Titanium Oxide Cluster Anions with Dimensions up to a Nanosize [J].
Lv, Shi-Ying ;
Liu, Qing-Yu ;
Zhao, Yan-Xia ;
He, Sheng-Gui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (10) :3951-3958
[33]   Reactivity of Atomic Oxygen Radical Anions Bound to Titania and Zirconia Nanoparticles in the Gas Phase: Low-Temperature Oxidation of Carbon Monoxide [J].
Ma, Jia-Bi ;
Xu, Bo ;
Meng, Jing-Heng ;
Wu, Xiao-Nan ;
Ding, Xun-Lei ;
Li, Xiao-Na ;
He, Sheng-Gui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (08) :2991-2998
[34]   Titanium Dioxide and its Modified Forms as Photocatalysts for Air Treatment [J].
Muangmora, Rattana ;
Kemacheevakul, Patiya ;
Chuangchote, Surawut .
CURRENT ANALYTICAL CHEMISTRY, 2021, 17 (02) :185-201
[35]   Generation and Detection of Reactive Oxygen Species in Photocatalysis [J].
Nosaka, Yoshio ;
Nosaka, Atsuko Y. .
CHEMICAL REVIEWS, 2017, 117 (17) :11302-11336
[36]   Photodissociation spectroscopy and dynamics of the N2O2- anion [J].
Osborn, DL ;
Leahy, DJ ;
Cyr, DR ;
Neumark, DM .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (13) :5026-5039
[37]  
Qiao BT, 2011, NAT CHEM, V3, P634, DOI [10.1038/NCHEM.1095, 10.1038/nchem.1095]
[38]   Black TiO2: A review of its properties and conflicting trends [J].
Rajaraman, T. S. ;
Parikh, Sachin P. ;
Gandhi, Vimal G. .
CHEMICAL ENGINEERING JOURNAL, 2020, 389
[39]   TiO2 Nanoparticles as Functional Building Blocks [J].
Sang, Lixia ;
Zhao, Yixin ;
Burda, Clemens .
CHEMICAL REVIEWS, 2014, 114 (19) :9283-9318
[40]   FULLY OPTIMIZED CONTRACTED GAUSSIAN-BASIS SETS OF TRIPLE ZETA VALENCE QUALITY FOR ATOMS LI TO KR [J].
SCHAFER, A ;
HUBER, C ;
AHLRICHS, R .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (08) :5829-5835