Kantorovich-type operators associated with a variant of Jain operators

被引:1
作者
Agratini, Octavian [1 ,2 ]
Dogru, Ogun [3 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Str Kogalniceanu 1, Cluj Napoca 400084, Romania
[2] Romanian Acad, Tiberiu Popoviciu Inst Numer Anal, Str Fantanele 57, Cluj Napoca 400320, Romania
[3] Gazi Univ, Dept Math, Fac Sci, Ankara, Turkey
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2021年 / 66卷 / 02期
关键词
Linear positive operator; Jain operator; modulus of smoothness; K-functional; Lipschitz function; APPROXIMATION;
D O I
10.24193/subbmath.2021.2.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note focuses on a sequence of linear positive operators of integral type in the sense of Kantorovich. The construction is based on a class of discrete operators representing a new variant of Jain operators. By our statements, we prove that the integral family turns out to be useful in approximating continuous signals defined on unbounded intervals. The main tools in obtaining these results are moduli of smoothness of first and second order, K-functional and Bohman-Korovkin criterion.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 15 条
[1]   Asymptotic behaviour of Jain operators [J].
Abel, Ulrich ;
Agratini, Octavian .
NUMERICAL ALGORITHMS, 2016, 71 (03) :553-565
[2]  
Agratini O., 2018, AN U VEST TIMIS MI, V56, P28
[3]  
Altomare F., 2012, Surv. Approx. Theory, V5, P92
[5]  
DEVORE R. A., 1993, GRUNDLEHREN MATH WIS, V303
[6]   Approximation by Kantorovich form of modified Szasz-Mirakyan operators [J].
Dhamija, Minakshi ;
Pratap, Ram ;
Deo, Naokant .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 :109-120
[7]   Approximation Properties of Generalized Jain Operators [J].
Dogru, O. ;
Mohapatra, R. N. ;
Orkcu, M. .
FILOMAT, 2016, 30 (09) :2359-2366
[8]  
Jain G. C., 1972, J AUST MATH SOC, V13, P271, DOI DOI 10.1017/S1446788700013689
[9]  
Jain G. C., 1977, Nanta Math, V10, P185
[10]  
Johnen, 1972, MAT VESNIK, V9, P289