Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

被引:17
作者
Espina, Miguel [1 ]
Juelke, Henriette [2 ]
Brehm, Waiter [1 ]
Ribitsch, Iris [2 ,3 ]
Winter, Karsten [2 ,4 ]
Delling, Uta [1 ]
机构
[1] Univ Leipzig, Fac Vet Med, Large Anim Clin Surg, D-04109 Leipzig, Germany
[2] Univ Leipzig, Translat Ctr Regenerat Med TRM, D-04109 Leipzig, Germany
[3] Univ Vet Med Vienna, Equine Clin, Vienna, Austria
[4] Univ Leipzig, Fac Med, Inst Anat, D-04109 Leipzig, Germany
来源
PEERJ | 2016年 / 4卷
关键词
Horse; Mesenchymal stromal cells (MSCs); Transport; Viability; STEM-CELLS; ADIPOSE-TISSUE; DIFFERENTIATION; SERUM; CRYOPRESERVATION; AGGREGATION; VIABILITY; MEDIA; RAT;
D O I
10.7717/peerj.1773
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 degrees C vs. room temperature; -20 degrees C vs. -80 degrees C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 x 10(6), 10 x 10(6), 20 x 10(6) MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and "transport'' at 4 degrees C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (< 40%) for all freezing protocols at -20 degrees C or -80 degrees C, particularly with bone marrow supernatant or plasma and DMSO. In part III, various cell concentrations also had no significant influence on any of the evaluated parameters. Chondrogenic differentiation showed a trend towards being decreased for all transport conditions, compared to control cells. Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. The unusual low viability after all freezing protocols is in contrast to previous equine studies. Potential causes are differences in the freezing, but also in thawing method. Also, the selected container (glass syringe) may have impacted viability. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Bone marrow-derived mesenchymal stem cells
    Kemp, KC
    Hows, J
    Donaldson, C
    LEUKEMIA & LYMPHOMA, 2005, 46 (11) : 1531 - 1544
  • [32] The therapeutic effects of bone marrow-derived mesenchymal stromal cells in the acute lung injury induced by sulfur mustard
    Feng, Yongwei
    Xu, Qingqiang
    Yang, Yuyan
    Shi, Wenwen
    Meng, Wenqi
    Zhang, Hao
    He, Xiaowen
    Sun, Mingxue
    Chen, Yongchun
    Zhao, Jie
    Guo, Zhenhong
    Xiao, Kai
    STEM CELL RESEARCH & THERAPY, 2019, 10 (1)
  • [33] Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses
    Maia, Leandro
    Landim-Alvarenga, Fernanda da Cruz
    Taffarel, Marilda Onghero
    de Moraes, Carolina Nogueira
    Machado, Gisele Fabrino
    Melo, Guilherme Dias
    Amorim, Rogerio Martins
    BMC VETERINARY RESEARCH, 2015, 11
  • [34] Application of Bone Marrow-Derived Mesenchymal Stem Cells in a Rotator Cuff Repair Model
    Gulotta, Lawrence V.
    Kovacevic, David
    Ehteshami, John R.
    Dagher, Elias
    Packer, Jonathan D.
    Rodeo, Scott A.
    AMERICAN JOURNAL OF SPORTS MEDICINE, 2009, 37 (11) : 2126 - 2133
  • [35] Molecular signature of human bone marrow-derived mesenchymal stromal cell subsets
    Kuci, Selim
    Kuci, Zyrafete
    Schaefer, Richard
    Spohn, Gabriele
    Winter, Stefan
    Schwab, Matthias
    Salzmann-Manrique, Emilia
    Klingebiel, Thomas
    Bader, Peter
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [36] Red blood cells and their releasates compromise bone marrow-derived human mesenchymal stem/stromal cell survival in vitro
    Dregalla, Ryan Christopher
    Herrera, Jessica Ann
    Donner, Edward Jeffery
    STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
  • [37] Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury
    Jiang, Jindou
    Bu, Xingyao
    Liu, Meng
    Cheng, Peixun
    NEURAL REGENERATION RESEARCH, 2012, 7 (01) : 46 - 53
  • [38] Intrathecal Transplantation of Autologous and Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Dogs
    Benavides, Felipe Perez
    Araujo Pinto, Giovana Boff
    Thomas Heckler, Marta Cristina
    Rodriguez Hurtado, Diana Milena
    Teixeira, Livia Ramos
    de Souza Monobe, Marina Mitie
    Machado, Gisele Fabrino
    de Melo, Guilherme Dias
    Rodriguez-Sanchez, Diego Noe
    Landim e Alvarenga, Fernanda da Cruz
    Amorim, Rogerio Martins
    CELL TRANSPLANTATION, 2021, 30
  • [39] Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System
    Jones, Mark
    Varella-Garcia, Marileila
    Skokan, Margaret
    Bryce, Steven
    Schowinsky, Jeffrey
    Peters, Rebecca
    Vang, Boah
    Brecheisen, Michelle
    Startz, Thomas
    Frank, Nathan
    Nankervis, Brian
    CYTOTHERAPY, 2013, 15 (11) : 1323 - 1339
  • [40] Comparative characterization of bone marrow-derived mesenchymal stromal cells from four different rat strains
    Barzilay, Ran
    Sadan, Ofer
    Melamed, Eldad
    Offen, Daniel
    CYTOTHERAPY, 2009, 11 (04) : 435 - 442