Domain structure and reorientation in CoFe2O4

被引:12
作者
Abes, M. [1 ,7 ]
Koops, C. T. [1 ]
Hrkac, S. B. [1 ]
McCord, J. [2 ]
Urs, N. O. [2 ]
Wolff, N. [2 ]
Kienle, L. [2 ]
Ren, W. J. [3 ]
Bouchenoire, L. [4 ,5 ]
Murphy, B. M. [1 ,6 ]
Magnussen, O. M. [1 ,6 ]
机构
[1] Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany
[2] Univ Kiel, Inst Mat Sci, D-24143 Kiel, Germany
[3] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China
[4] European Synchrotron Radiat Facil, XMaS, F-38000 Grenoble, France
[5] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England
[6] Univ Kiel, Ruprecht Haensel Lab, D-24098 Kiel, Germany
[7] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium
关键词
SINGLE-CRYSTALS; STRAIN;
D O I
10.1103/PhysRevB.93.195427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microscopic processes underlying magnetostriction in ferrites were studied for the case of CoFe2O4 single crystals by high-resolution in situ x-ray diffraction and complementary magnetic microscopy techniques. The data support the reports of Yang and Ren [Phys. Rev. B 77, 014407 ( 2008)] that magnetostriction in these materials originates from the switching of crystallographic domains, similar to ferroelastic or ferroelectric domain switching, and reveals the presence of two coexisting tetragonal spinel structures, corresponding to domains of high and of low strain. The latter alternate in the crystal, separated by 90 degrees domain boundaries, and can be explained by the effect of internal stress emerging during the transition into the ferrimagnetic phase. During magnetization of the sample two structural transitions are observed: a conversion of the transversal into axial domains at 1.95 kOe and a growth of the high-strain domains at the cost of the low-strain axial domains at 2.8 kOe. These microscopic changes are in good agreement with the macroscopic magnetization and magnetostriction behavior of CoFe2O4.
引用
收藏
页数:7
相关论文
共 36 条
[1]   ANISOTROPY AND MAGNETOSTRICTION OF SOME FERRITES [J].
BOZORTH, RM ;
TILDEN, EF ;
WILLIAMS, AJ .
PHYSICAL REVIEW, 1955, 99 (06) :1788-1798
[2]   New synchrotron radiation sources and the next-generation light sources [J].
Hasnain, SS ;
Kamitsubo, H ;
Mills, DM .
JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 :1171-1171
[3]  
Du Tremolet de Delacheisserie E., 1993, MAGNETOSTRICTION THE
[4]  
feng D. X., 2009, T NONFERR METAL SOC, V19, P1454
[5]   Revival of the magnetoelectric effect [J].
Fiebig, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (08) :R123-R152
[6]   First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4 [J].
Fritsch, Daniel ;
Ederer, Claude .
PHYSICAL REVIEW B, 2012, 86 (01)
[7]   Demonstration of magnetoelectric scanning probe microscopy [J].
Hattrick-Simpers, Jason R. ;
Dai, Liyang ;
Wuttig, Manfred ;
Takeuchi, Ichiro ;
Quandt, Eckhard .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (10)
[8]   Magnetic and magnetostrictive behavior of Dy3+ doped CoFe2O4 single crystals grown by flux method [J].
Kambale, Rahul C. ;
Song, K. M. ;
Won, C. J. ;
Lee, K. D. ;
Hur, N. .
JOURNAL OF CRYSTAL GROWTH, 2012, 340 (01) :171-174
[9]   Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch [J].
Kim, Jang-Yong ;
Yao, Lide ;
van Dijken, Sebastiaan .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (08)
[10]  
Kriegisch M., 2012, THESIS TU WIEN