Pooling across cells to normalize single-cell RNA sequencing data with many zero counts

被引:711
作者
Lun, Aaron T. L. [1 ]
Bach, Karsten [2 ]
Marioni, John C. [1 ,2 ,3 ]
机构
[1] Univ Cambridge, Canc Res UK Cambridge Inst, Li Ka Shing Ctr, Robinson Way, Cambridge CB2 0RE, England
[2] EMBL European Bioinformat Inst, Wellcome Genome Campus, Cambridge CB10 1SD, England
[3] Wellcome Trust Sanger Inst, Wellcome Genome Campus, Cambridge CB10 1SA, England
关键词
Single-cell RNA-seq; Normalization; Differential expression; DIFFERENTIAL EXPRESSION ANALYSIS; GENE-EXPRESSION; REVEALS;
D O I
10.1186/s13059-016-0947-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a novel approach where expression values are summed across pools of cells, and the summed values are used for normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is observed in real data, where deconvolution improves the relevance of results of downstream analyses.
引用
收藏
页数:14
相关论文
共 24 条
[1]  
Alexa A., 2010, topGO: enrichment analysis for gene ontology
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
[4]  
Chen YS, 2014, FRONT PROBAB STAT SC, P51, DOI 10.1007/978-3-319-07212-8_3
[5]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[6]   Single-Cell RNA-Seq of Bone Marrow-Derived Mesenchymal Stem Cells Reveals Unique Profiles of Lineage Priming [J].
Freeman, Brian T. ;
Jung, Jangwook P. ;
Ogle, Brenda M. .
PLOS ONE, 2015, 10 (09)
[7]   Design and Analysis of Single-Cell Sequencing Experiments [J].
Gruen, Dominic ;
van Oudenaarden, Alexander .
CELL, 2015, 163 (04) :799-810
[8]  
Islam S, 2014, NAT METHODS, V11, P163, DOI [10.1038/NMETH.2772, 10.1038/nmeth.2772]
[9]   Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells [J].
Klein, Allon M. ;
Mazutis, Linas ;
Akartuna, Ilke ;
Tallapragada, Naren ;
Veres, Adrian ;
Li, Victor ;
Peshkin, Leonid ;
Weitz, David A. ;
Kirschner, Marc W. .
CELL, 2015, 161 (05) :1187-1201
[10]   Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation [J].
Kolodziejczyk, Aleksandra A. ;
Kim, Jong Kyoung ;
Tsang, Jason C. H. ;
Ilicic, Tomislav ;
Henriksson, Johan ;
Natarajan, Kedar N. ;
Tuck, Alex C. ;
Gao, Xuefei ;
Buehler, Marc ;
Liu, Pentao ;
Marioni, John C. ;
Teichmann, Sarah A. .
CELL STEM CELL, 2015, 17 (04) :471-485