High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger DNA recognition

被引:161
作者
Elrod-Erickson, M
Benson, TE
Pabo, CO
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
[2] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA
关键词
protein-DNA recognition; X-ray crystallography; Zif268; zinc finger;
D O I
10.1016/S0969-2126(98)00047-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Zinc fingers of the Cys(2)-His(2) Glass comprise one of the largest families of eukaryotic DNA-binding motifs and recognize a diverse set of DNA sequences, These proteins have a relatively simple modular structure and key base contacts are typically made by a few residues from each finger. These features make the zinc finger motif an attractive system for designing novel DNA-binding proteins and for exploring fundamental principles of protein-DNA recognition, Results: Here we report the X-ray crystal structures of zinc finger-DNA complexes involving three variants of Zif268, with multiple changes in the recognition helix of finger one. We describe the structure of each of these three-finger peptides bound to its corresponding target site. To help elucidate the differential basis for site-specific recognition, the structures of four other complexes containing various combinations of these peptides with alternative binding sites have also been determined, Conclusions: The protein-DNA contacts observed in these complexes reveal the basis for the specificity demonstrated by these Zif268 variants. Many, but not all, of the contacts can be rationalized in terms of a recognition code, but the predictive value of such a code is limited, The structures illustrate how modest changes in the docking arrangement accommodate the new sidechain-base and sidechain-phosphate interactions. Such adaptations help explain the versatility of naturally occurring zinc finger proteins and their utility in design.
引用
收藏
页码:451 / 464
页数:14
相关论文
共 30 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]  
Brunger A.T., 1992, X-Plor Manual Version 3.1
[3]   Physical basis of a protein-DNA recognition code [J].
Choo, Y ;
Klug, A .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (01) :117-125
[4]   TOWARD A CODE FOR THE INTERACTIONS OF ZINC FINGERS WITH DNA - SELECTION OF RANDOMIZED FINGERS DISPLAYED ON PHAGE [J].
CHOO, Y ;
KLUG, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (23) :11163-11167
[5]   LENGTH-ENCODED MULTIPLEX BINDING-SITE DETERMINATION - APPLICATION TO ZINC-FINGER PROTEINS [J].
DESJARLAIS, JR ;
BERG, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (23) :11099-11103
[6]   TOWARD RULES RELATING ZINC FINGER PROTEIN SEQUENCES AND DNA-BINDING SITE PREFERENCES [J].
DESJARLAIS, JR ;
BERG, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (16) :7345-7349
[7]  
DICKERSON R, 1993, NEWHEL93
[8]   Zif268 protein-DNA complex refined at 1.6 angstrom: A model system for understanding zinc finger-DNA interactions [J].
ElrodErickson, M ;
Rould, MA ;
Nekludova, L ;
Pabo, CO .
STRUCTURE, 1996, 4 (10) :1171-1180
[9]   SETOR - HARDWARE-LIGHTED 3-DIMENSIONAL SOLID MODEL REPRESENTATIONS OF MACROMOLECULES [J].
EVANS, SV .
JOURNAL OF MOLECULAR GRAPHICS, 1993, 11 (02) :134-&
[10]   THE CRYSTAL-STRUCTURE OF A 2 ZINC-FINGER PEPTIDE REVEALS AN EXTENSION TO THE RULES FOR ZINC-FINGER DNA RECOGNITION [J].
FAIRALL, L ;
SCHWABE, JWR ;
CHAPMAN, L ;
FINCH, JT ;
RHODES, D .
NATURE, 1993, 366 (6454) :483-487