Experimental Investigation on the Characteristic Mobilization and Remaining Oil Distribution under CO2 Huff-n-Puff of Chang 7 Continental Shale Oil

被引:18
|
作者
Zhu, Jianhong [1 ,2 ]
Chen, Junbin [1 ,2 ]
Wang, Xiaoming [1 ,2 ]
Fan, Lingyi [1 ,2 ]
Nie, Xiangrong [1 ,2 ]
机构
[1] Xian Shiyou Univ, Coll Petr Engn, Xian 710065, Peoples R China
[2] Xian Shiyou Univ, Shaanxi Key Lab Well Stabil & Fluid & Rock Mech O, Xian 710065, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; huff-n-puff; oil recovery factor; remaining oil distribution; NMR; pore scale; SPONTANEOUS IMBIBITION; PORE SIZES; INJECTION; RESERVOIRS; SIMULATION; RECOVERY; WATER; STORAGE; GAS; EOR;
D O I
10.3390/en14102782
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Chang 7 continental shale oil reservoir is tight. The recovery factor is extremely low, the remaining oil is very high, and injecting water to improve oil recovery effectiveness is too hard. Therefore, in this paper, physical simulation experiments of CO2 huff-n-puff shale oil and NMR tests were conducted to study the cycle numbers and permeability on the recovery degree, as well as the characteristics of shale oil mobilization and the remaining oil micro distribution. The results showed that the cumulative oil recovery factors (ORFs) gradually increased in the natural logarithmic form, the single cycle ORFs decreased rapidly in exponential form with the huff-n-puff cycle number, and the biggest economic cycle numbers were between approximately 3 and 5. Furthermore, the higher the permeability, the higher the ORF, but the difference of ORF decreased between the two experimental samples with the cycles. In addition, the gap of production and recovery degree was large between the different scale pores, the ORF of macropores was 6-8 times that of micropores, and the final remaining oil was mainly distributed in the micropores, accounting for 82.29% of the total amount; meanwhile, the macropores comprised less than 0.5%. In the process of huff-n-puff, CO2 flowed into macropores, mesopores, and smallpores under the pressure differential effect, but a small amount of CO2 slowly diffused into micropores, resulting in the ORF of the former with more free oil being higher and the ORF of micropores with more adsorbed oil being lower. Therefore, promoting a better contact and reaction between CO2 and shale oil of micropores is one of the key ways to effectively develop the Chang 7 continental shale oil and enhance oil recovery.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Enhanced heavy oil recovery via surfactant-assisted CO2 huff-n-puff processes
    Li, Binfei
    Zhang, Qiliang
    Li, Songyan
    Li, Zhaomin
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 159 : 25 - 34
  • [32] Effect of hydraulic fracture deformation hysteresis on CO2 huff-n-puff performance in shale gas reservoirs
    Yan, Xia
    Liu, Pi-yang
    Huang, Zhao-qin
    Sun, Hai
    Zhang, Kai
    Wang, Jun-feng
    Yao, Jun
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2023, 24 (01): : 37 - 55
  • [33] Simulation Study of CO2 Huff-n-Puff in Tight Oil Reservoirs Considering Molecular Diffusion and Adsorption
    Zhang, Yuan
    Hu, Jinghong
    Zhang, Qi
    ENERGIES, 2019, 12 (11)
  • [34] Experimental study of spontaneous imbibition and CO2 huff and puff in shale oil reservoirs with NMR
    Chen, Yukun
    Zhi, Dongming
    Qin, Jianhua
    Song, Ping
    Zhao, Hui
    Wang, Fuyong
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [35] Performance Optimization of CO2 Huff-n-Puff for Multifractured Horizontal Wells in Tight Oil Reservoirs
    Hao, Mingqiang
    Liao, Songlin
    Yu, Guangming
    Lei, Xinhui
    Tang, Yong
    GEOFLUIDS, 2020, 2020
  • [36] Simulation study of factors affecting CO2 Huff-n-Puff process in tight oil reservoirs
    Zhang, Yuan
    Yu, Wei
    Li, Zhiping
    Sepehrnoori, Kamy
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 163 : 264 - 269
  • [37] The characteristics and effects of Huff-n-Puff in shale with brine, aqueous surfactant solutions and CO2
    Hao, Yongmao
    Wu, Zhonghui
    Chen, Zheng
    Li, Lei
    Sun, Yongquan
    Liu, Ran
    Guo, Fan
    JOURNAL OF CO2 UTILIZATION, 2024, 79
  • [38] Molecular insight into minimum miscibility pressure estimation of shale oil/CO2 in organic nanopores using CO2 huff-n-puff
    Sun, Qian
    Bhusal, Aabiskar
    Zhang, Na
    Adhikari, Kapil
    CHEMICAL ENGINEERING SCIENCE, 2023, 280
  • [39] Three-dimensional physical experimental study on mechanisms and influencing factors of CO2 huff-n-puff and flooding process in shale reservoirs after fracturing
    Song, Yuyuan
    Yao, Chuanjin
    Zhang, Xiuqing
    Zhao, Jia
    Chen, Nan
    Hou, Jingxuan
    Yang, Huichao
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243
  • [40] Mechanisms of CO2 huff and puff enhanced oil recovery and storage within shale nanopores
    Wang, Sen
    Zhang, Mengqi
    Zhang, Yulong
    Lei, Zhengdong
    Feng, Qihong
    Xu, Shiqian
    Zhang, Jiyuan
    CHEMICAL ENGINEERING JOURNAL, 2025, 506