Remarks on an Optimal Linear Control Design Applied to a Nonideal and an Ideal Structure Coupled to an Essentially Nonlinear Oscillator

被引:4
作者
Chavarette, Fabio Roberto [1 ]
Balthazar, Jose Manoel [1 ]
Felix, Jorge L. P. [1 ]
机构
[1] State Univ Sao Paulo, UNESP Rio Claro, BR-13500230 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
control system synthesis; linear systems; nonlinear control systems; optimal control; oscillators; VIBRATING SYSTEMS; ENERGY-TRANSFER; CHAOS CONTROL; DYNAMICS; SYNCHRONIZATION;
D O I
10.1115/1.4000829
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper considers a nonlinear dynamics of a particular structure coupled (or uncoupled) to an essentially nonlinear oscillator. We used an optimal linear control design to reduce the amplitude of oscillations and to expand energy consumption, for both ideal and nonideal mathematical models.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 28 条
[1]   An overview on non-ideal vibrations [J].
Balthazar, JM ;
Mook, DT ;
Weber, HI ;
Brasil, RMLRF ;
Fenili, A ;
Belato, D ;
Felix, JLP .
MECCANICA, 2003, 38 (06) :613-621
[2]   On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model [J].
Chavarette, Fabio Roberto ;
Balthazar, Jose Manoel ;
Rafikov, Marat ;
Hermini, Heider Anibal .
CHAOS SOLITONS & FRACTALS, 2009, 39 (04) :1651-1666
[3]   On non-linear dynamics and control designs applied to the ideal and non-ideal variants of the Fitzhugh-Nagumo (FN) mathematical model [J].
Chavarette, Fabio Roberto ;
Balthazar, Jose Manoel ;
Peruzzi, Nelson Jose ;
Rafikov, Marat .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :892-905
[4]   A reducing of a chaotic movement to a periodic orbit, of a micro-electro-mechanical system, by using an optimal linear control design [J].
Chavarette, Fabio Roberto ;
Balthazar, Jose Manoel ;
Felix, Jorge L. P. ;
Rafikov, Marat .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1844-1853
[5]   On an Active Control for a Structurally Nonlinear Mechanical System, Taking Into Account an Energy Pumping [J].
Costa, S. N. J. ;
Balthazar, J. M. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (03) :1-6
[6]   On energy transfer between vibrating systems under linear and nonlinear interactions [J].
Costa, S. N. J. ;
Hassmann, C. H. G. ;
Balthazar, J. M. ;
Dantas, M. J. H. .
NONLINEAR DYNAMICS, 2009, 57 (1-2) :57-67
[7]   A degenerate bifurcation structure in the dynamics of coupled oscillators with essential stiffness nonlinearities [J].
Gendelman, O ;
Manevitch, LI ;
Vakakis, AF ;
Bergman, L .
NONLINEAR DYNAMICS, 2003, 33 (01) :1-10
[8]  
Gendelman Oleg., 2001, ASME J APPL MECH, V68, P34
[9]   Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators [J].
Gendelman, OV .
NONLINEAR DYNAMICS, 2001, 25 (1-3) :237-253
[10]   Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results [J].
Gourdon, E. ;
Alexander, N. A. ;
Taylor, C. A. ;
Lamarque, C. H. ;
Pernot, S. .
JOURNAL OF SOUND AND VIBRATION, 2007, 300 (3-5) :522-551