Double Roman Domination in Generalized Petersen Graphs

被引:5
作者
Gao, Hong [1 ]
Huang, Jiahuan [1 ]
Yang, Yuansheng [2 ]
机构
[1] Dalian Maritime Univ, Coll Sci, Dalian 116026, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Petersen graph; Domination on graphs; Roman domination; Double Roman domination;
D O I
10.1007/s41980-021-00551-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The double Roman domination can be described as a strengthened defense strategy. In an empire, each city can be protected by at most three troops. Every city having no troops must be adjacent to at least two cities with two troops or one city with three troops. Every city having one troop must be adjacent to at least one city with more than one troop. Such an assignment is called a double Roman dominating function (DRDF) of an empire/a graph. The minimum number of troops under such an assignment is the double Roman domination number, denoted as gamma(dR). Shao et al. (2018) determine the exact value of gamma(dR)(P(n, 1)). Jiang et al. (2018) determine gamma(dR)(P(n, 2)). In this article, we investigate the double Roman domination number of P(n, k) for k >= 3. We determine the exact value of gamma(dR)(P(n, k)) for n 0(mod4) and k 1(mod2), and present an improved upper bound of gamma(dR)(P(n, k)) for n not equivalent to 0(mod4) or k not equivalent to 1(mod2). Our results imply P(n, 3) for n 0(mod4) is double Roman which can partially answer the open question present by Beeler et al. (2016).
引用
收藏
页码:885 / 894
页数:10
相关论文
共 13 条
[1]   Trees with Double Roman Domination Number Twice the Domination Number Plus Two [J].
Ahangar, H. Abdollahzadeh ;
Amjadi, J. ;
Chellali, M. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3) :1081-1088
[2]   On the double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2017, 232 :1-7
[3]   An upper bound on the double Roman domination number [J].
Amjadi, J. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) :81-89
[4]   Algorithmic results on double Roman domination in graphs [J].
Banerjee, S. ;
Henning, Michael A. ;
Pradhan, D. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) :90-114
[5]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[6]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[7]  
Fu XL, 2007, ARS COMBINATORIA, V84, P373
[8]   A characterization of double Roman trees [J].
Henning, Michael A. ;
Rad, Nader Jafari .
DISCRETE APPLIED MATHEMATICS, 2019, 259 :100-111
[9]   The Double Roman Domination Numbers of Generalized Petersen Graphs P(n, 2) [J].
Jiang, Huiqin ;
Wu, Pu ;
Shao, Zehui ;
Rao, Yongsheng ;
Liu, Jia-Bao .
MATHEMATICS, 2018, 6 (10)
[10]   An improved upper bound on the double Roman domination number of graphs with minimum degree at least two [J].
Khoeilar, Rana ;
Karami, Hossein ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2019, 270 :159-167