Solitary wave solution of the Zakharov-Kuznetsov equation in plasmas with power law nonlinearity

被引:55
作者
Biswas, Anjan [1 ]
Zerrad, Essaid [2 ]
机构
[1] Delaware State Univ, Dept Appl Math & Theoret Phys, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[2] Delaware State Univ, Dept Phys & Preengn, Dover, DE 19901 USA
关键词
Solitons; Integrals of motion; Integrability; SCHRODINGER-EQUATION; DYNAMICS;
D O I
10.1016/j.nonrwa.2009.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain an exact 1-soliton solution of the Zakharov-Kuznetsov equation, with power law nonlinearity, by the solitary wave ansatz method. A couple of conserved quantities of this equation are also calculated by using this 1-soliton solution. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3272 / 3274
页数:3
相关论文
共 10 条
[1]   Adiabatic parameter dynamics of perturbed solitary waves [J].
Antonova, Mariana ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :734-748
[2]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[3]   Existence and stability of alternative ion-acoustic solitary wave solution of the combined MKdV-KdV-ZK equation in a magnetized nonthermal plasma consisting of warm adiabatic ions [J].
Das, Jayasree ;
Bandyopadhyay, Anup ;
Das, K. P. .
PHYSICS OF PLASMAS, 2007, 14 (09)
[4]   The formally variable separation approach for the modified Zakharov-Kuznetsov equation [J].
Lin, Chang ;
Zhang, Xiu-lian .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (05) :636-642
[5]   Analytical study of the nonlinear Schrodinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates [J].
Lue, Xing ;
Tian, Bo ;
Xu, Tao ;
Cai, Ke-Jie ;
Liu, Wen-Jun .
ANNALS OF PHYSICS, 2008, 323 (10) :2554-2565
[6]   Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrodinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications [J].
Lue, Xing ;
Zhu, Hong-Wu ;
Yao, Zhen-Zhi ;
Meng, Xiang-Hua ;
Zhang, Cheng ;
Zhang, Chun-Yi ;
Tian, Bo .
ANNALS OF PHYSICS, 2008, 323 (08) :1947-1955
[7]   Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation [J].
Munro, S ;
Parkes, EJ .
JOURNAL OF PLASMA PHYSICS, 2000, 64 (04) :411-426
[8]   Nonlinear Zakharov-Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic solitary waves in a relativistic, rotating magnetized electron-positron-ion plasma [J].
Mushtaq, A ;
Shah, HA .
PHYSICS OF PLASMAS, 2005, 12 (07) :1-8
[9]   New spiky and explosive solitary wave solutions for further modified Zakharov-Kuznetsov equation [J].
Naranmandula ;
Wang, KX .
PHYSICS LETTERS A, 2005, 336 (2-3) :112-116
[10]   A note on the unique continuation property for Zakharov-Kuznetsov equation [J].
Panthee, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (03) :425-438