Strong-disorder approach for the Anderson localization transition

被引:10
作者
Mard, H. Javan [1 ,2 ]
Hoyos, Jose A. [3 ]
Miranda, E. [4 ]
Dobrosavljevic, V. [1 ,2 ]
机构
[1] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[2] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA
[3] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, SP, Brazil
[4] Univ Estadual Campinas, Inst Fis Gleb Wataghin, R Sergio Buarque de Holanda 777, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
METAL-INSULATOR-TRANSITION; EPSILON-EXPANSION; SCALING THEORY; SYSTEMS; DIMENSIONALITY; MODEL; STATES;
D O I
10.1103/PhysRevB.96.045143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a strong-disorder renormalization-group approach to study the Anderson localization transition in disordered tight-binding models in any dimension. Our approach shifts the focus from the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder nature of the transition. By studying the two-point conductance, we (i) show that our approach is in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for the Anderson transition is d(c)(+) = infinity, (iii) find that the scaling function shows a previously reported 'mirror symmetry' in the critical region, and (iv) demonstrate that the range of conductances for which this symmetry holds increases with the system dimensionality. Our results open an efficient avenue to explore the critical properties of the Anderson transition using the strong-coupling high-dimension limit as a starting point.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] MATHEMATICAL ASPECTS OF ANDERSON LOCALIZATION
    Spencer, Thomas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (12-13): : 1621 - 1639
  • [32] Anderson localization in doped semiconductors
    Poduval, Prathyush P.
    Das Sarma, Sankar
    PHYSICAL REVIEW B, 2023, 107 (17)
  • [33] Anderson localization of a Rydberg electron
    Eiles, Matthew T.
    Eisfeld, Alexander
    Rost, Jan M.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [34] The role of power-law correlated disorder in the Anderson metal-insulator transition
    Croy, A.
    Cain, P.
    Schreiber, M.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (05)
  • [35] Adatoms and Anderson localization in graphene
    Garcia, Jose H.
    Uchoa, Bruno
    Covaci, Lucian
    Rappoport, Tatiana G.
    PHYSICAL REVIEW B, 2014, 90 (08):
  • [36] Anderson Localization of Composite Particles
    Suzuki, Fumika
    Lemeshko, Mikhail
    Zurek, Wojciech H.
    Krems, Roman, V
    PHYSICAL REVIEW LETTERS, 2021, 127 (16)
  • [37] Anderson transition in 1D systems with spatial disorder
    Benhenni, Rabah
    Senoud, Khaled
    Bouamrane, Rachid
    Zekri, Nouredine
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (05) : 1002 - 1008
  • [38] Anderson disorder in graphene nanoribbons: A local distribution approach
    Schubert, Gerald
    Schleede, Jens
    Fehske, Holger
    PHYSICAL REVIEW B, 2009, 79 (23):
  • [39] Evading Anderson localization in a one-dimensional conductor with correlated disorder
    Narayan, Onuttom
    Mathur, Harsh
    Montgomery, Richard
    PHYSICAL REVIEW B, 2021, 103 (14)
  • [40] The Anderson localization transition and eigenfunction multifractality in an ensemble of ultrametric random matrices
    Fyodorov, Yan V.
    Ossipov, Alexander
    Rodriguez, Alberto
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,