Single-Atom Verification of the Noise-Resilient and Fast Characteristics of Universal Nonadiabatic Noncyclic Geometric Quantum Gates

被引:25
作者
Zhang, J. W. [1 ,3 ]
Yan, L-L [2 ]
Li, J. C. [1 ,3 ]
Ding, G. Y. [1 ,3 ]
Bu, J. T. [1 ,3 ]
Chen, L. [1 ]
Su, S-L [2 ]
Zhou, F. [1 ]
Feng, M. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[2] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China
[4] Inst Ind Technol, Res Ctr Quantum Precis Measurement, Guangzhou, Peoples R China
[5] Chinese Acad Sci, Guangzhou 511458, Peoples R China
基金
中国国家自然科学基金;
关键词
EXPERIMENTAL REALIZATION; PHASE; DYNAMICS;
D O I
10.1103/PhysRevLett.127.030502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum gates induced by geometric phases are intrinsically robust against noise due to the global properties of their evolution paths. Compared to conventional nonadiabatic geometric quantum computation, the recently proposed nonadiabatic noncyclic geometric quantum computation (NNGQC) works in a faster fashion while still remaining the robust feature of the geometric operations. Here, we experimentally implement the NNGQC in a single trapped ultracold Ca-40(+) ion to verify the noise-resilient and fast feature. By performing unitary operations under imperfect conditions, we witness the advantages of the NNGQC with measured fidelities by quantum process tomography in comparison to other two quantum gates by conventional nonadiabatic geometric quantum computation and by straightforward dynamical evolution. Our results provide the first evidence confirming the possibility of accelerated quantum information processing with limited systematic errors even in an imperfect situation.
引用
收藏
页数:7
相关论文
共 66 条
[1]   Experimental realization of non-Abelian non-adiabatic geometric gates [J].
Abdumalikov, A. A., Jr. ;
Fink, J. M. ;
Juliusson, K. ;
Pechal, M. ;
Berger, S. ;
Wallraff, A. ;
Filipp, S. .
NATURE, 2013, 496 (7446) :482-485
[2]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[3]   Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum Gates with Optimal Control in a Trapped Ion [J].
Ai, Ming-Zhong ;
Li, Sai ;
Hou, Zhibo ;
He, Ran ;
Qian, Zhong-Hua ;
Xue, Zheng-Yuan ;
Cui, Jin-Ming ;
Huang, Yun-Feng ;
Li, Chuan-Feng ;
Guo, Guang-Can .
PHYSICAL REVIEW APPLIED, 2020, 14 (05)
[4]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[5]   Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin [J].
Arroyo-Camejo, Silvia ;
Lazariev, Andrii ;
Hell, Stefan W. ;
Balasubramanian, Gopalakrishnan .
NATURE COMMUNICATIONS, 2014, 5
[6]   Exploring the effect of noise on the Berry phase [J].
Berger, S. ;
Pechal, M. ;
Abdumalikov, A. A., Jr. ;
Eichler, C. ;
Steffen, L. ;
Fedorov, A. ;
Wallraff, A. ;
Filipp, S. .
PHYSICAL REVIEW A, 2013, 87 (06)
[8]   High-Fidelity and Robust Geometric Quantum Gates that Outperform Dynamical Ones [J].
Chen, Tao ;
Xue, Zheng-Yuan .
PHYSICAL REVIEW APPLIED, 2020, 14 (06)
[9]   Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting Circuits [J].
Chen, Tao ;
Shen, Pu ;
Xue, Zheng-Yuan .
PHYSICAL REVIEW APPLIED, 2020, 14 (03)
[10]   Nonadiabatic Geometric Quantum Computation with Parametrically Tunable Coupling [J].
Chen, Tao ;
Xue, Zheng-Yuan .
PHYSICAL REVIEW APPLIED, 2018, 10 (05)