Phase Transitions in Equilibrium and Non-Equilibrium Models on Some Topologies

被引:0
作者
De Sousa Lima, Francisco W. [1 ]
机构
[1] Univ Fed Piaui, Dept Fis, Dietrich Stauffer Computat Phys Lab, BR-64049550 Teresina, PI, Brazil
关键词
nonequilibrium; phase transition; Monte Carlo simulations; MAJORITY-VOTE MODEL; SMALL-WORLD NETWORK; ISING-MODEL; MONTE-CARLO; UNIVERSALITY; SIMULATION; LATTICES; COMPLEX;
D O I
10.3390/e18030081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On some regular and non-regular topologies, we studied the critical properties of models that present up-down symmetry, like the equilibrium Ising model and the nonequilibrium majority vote model. These are investigated on networks, like Apollonian (AN), Barabasi-Albert (BA), small-worlds (SW), Voronoi-Delaunay (VD) and Erdos-Renyi (ER) random graphs. The review here is on phase transitions, critical points, exponents and universality classes that are compared to the results obtained for these models on regular square lattices (SL).
引用
收藏
页数:13
相关论文
共 52 条
[1]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[2]   Ferromagnetic phase transition in Barabasi-Albert networks [J].
Aleksiejuk, A ;
Holyst, JA ;
Stauffer, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) :260-266
[3]   Ising model on the Apollonian network with node-dependent interactions [J].
Andrade, R. F. S. ;
Andrade, J. S., Jr. ;
Herrmann, H. J. .
PHYSICAL REVIEW E, 2009, 79 (03)
[4]   Magnetic models on Apollonian networks [J].
Andrade, RFS ;
Herrmann, HJ .
PHYSICAL REVIEW E, 2005, 71 (05)
[5]  
[Anonymous], 2006, ISLAM U J SER NAT ST
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   On the properties of small-world network models [J].
Barrat, A ;
Weigt, M .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (03) :547-560
[8]  
Baxter RJ., 1982, EXACTLY SOLVED MODEL
[9]   ROLE OF IRREVERSIBILITY IN STABILIZING COMPLEX AND NONERGODIC BEHAVIOR IN LOCALLY INTERACTING DISCRETE-SYSTEMS [J].
BENNETT, CH ;
GRINSTEIN, G .
PHYSICAL REVIEW LETTERS, 1985, 55 (07) :657-660
[10]  
Binder Kurt, 1988, MONTE CARLO SIMULATI