Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing

被引:57
作者
Liu, Fanxin [1 ,2 ,3 ,4 ]
Song, Boxiang [5 ]
Su, Guangxu [1 ,2 ]
Liang, Owen [6 ]
Zhan, Peng [1 ,2 ]
Wang, Han [5 ]
Wu, Wei [5 ]
Xie, Yahong [6 ,7 ]
Wang, Zhenlin [1 ,2 ]
机构
[1] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Zhejiang Univ Technol, Collaborat Innovat Ctr Informat Technol Biol & Me, Hangzhou 310023, Zhejiang, Peoples R China
[4] Zhejiang Univ Technol, Coll Sci, Hangzhou 310023, Zhejiang, Peoples R China
[5] Univ Southern Calif, Dept Elect Engn Electrophys, Los Angeles, CA 90089 USA
[6] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
基金
美国国家科学基金会; 中国国家自然科学基金; 国家重点研发计划;
关键词
electric field in free space; molecular sensing; nanoimprint lithography; nanofingers; ta-C films; 3D NANOSTAR DIMERS; RAMAN-SCATTERING; QUANTUM PLASMONICS; GAP PLASMONS; SPECTROSCOPY; NANOPARTICLES; CARBON; NANOFINGERS; NANOGAP; UNIFORM;
D O I
10.1002/smll.201801146
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A strongly confined and enhanced electromagnetic (EM) field due to gap-plasmon resonance offers a promising pathway for ultrasensitive molecular detections. However, the maximum enhanced portion of the EM field is commonly concentrated within the dielectric gap medium that is inaccessible to external substances, making it extremely challenging for achieving single-molecular level detection sensitivity. Here, a new family of plasmonic nanostructure created through a unique process using nanoimprint lithography is introduced, which enables the precise tailoring of the gap plasmons to realize the enhanced field spilling to free space. The nanostructure features arrays of physically contacted nanofinger-pairs with a 2 nm tetrahedral amorphous carbon (ta-C) film as an ultrasmall dielectric gap. The high tunneling barrier offered by ta-C film due to its low electron affinity makes an ultranarrow gap and high enhancement factor possible at the same time. Additionally, its high electric permittivity leads to field redistribution and an abrupt increase across the ta-C/air boundary and thus extensive spill-out of the coupled EM field from the gap region with field enhancement in free space of over 10(3). The multitude of benefits deriving from the unique nanostructure hence allows extremely high detection sensitivity at the single-molecular level to be realized as demonstrated through bianalyte surface-enhanced Raman scattering measurement.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Enhanced Raman Scattering with Dielectrics [J].
Alessandri, Ivano ;
Lombardi, John R. .
CHEMICAL REVIEWS, 2016, 116 (24) :14921-14981
[2]   Mixed Dimer Double-Resonance Substrates for Surface-Enhanced Raman Spectroscopy [J].
Banaee, Mohamad G. ;
Crozier, Kenneth B. .
ACS NANO, 2011, 5 (01) :307-314
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves [J].
Chen, Xiaoshu ;
Park, Hyeong-Ryeol ;
Pelton, Matthew ;
Piao, Xianji ;
Lindquist, Nathan C. ;
Im, Hyungsoon ;
Kim, Yun Jung ;
Ahn, Jae Sung ;
Ahn, Kwang Jun ;
Park, Namkyoo ;
Kim, Dai-Sik ;
Oh, Sang-Hyun .
NATURE COMMUNICATIONS, 2013, 4
[5]   3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few- Molecule Surface-Enhanced Raman Scattering [J].
Chirumamilla, Manohar ;
Toma, Andrea ;
Gopalakrishnan, Anisha ;
Das, Gobind ;
Zaccaria, Remo Proietti ;
Krahne, Roman ;
Rondanina, Eliana ;
Leoncini, Marco ;
Liberale, Carlo ;
De Angelis, Francesco ;
Di Fabrizio, Enzo .
ADVANCED MATERIALS, 2014, 26 (15) :2353-2358
[6]   Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection [J].
Dai, Zhigao ;
Xiao, Xiangheng ;
Liao, Lei ;
Zheng, Junfeng ;
Mei, Fei ;
Wu, Wei ;
Ying, Jianjian ;
Ren, Feng ;
Jiang, Changzhong .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[7]   Electromagnetic theories of surface-enhanced Raman spectroscopy [J].
Ding, Song-Yuan ;
You, En-Ming ;
Tian, Zhong-Qun ;
Moskovits, Martin .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) :4042-4076
[8]   Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae [J].
Dodson, Stephanie ;
Haggui, Mohamed ;
Bachelot, Renaud ;
Plain, Jerome ;
Li, Shuzhou ;
Xiong, Qihua .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (03) :496-501
[9]   Bridging quantum and classical plasmonics with a quantum-corrected model [J].
Esteban, Ruben ;
Borisov, Andrei G. ;
Nordlander, Peter ;
Aizpurua, Javier .
NATURE COMMUNICATIONS, 2012, 3
[10]   Bi-analyte single molecule SERS technique with simultaneous spatial resolution [J].
Etchegoin, Pablo G. ;
Le Ru, Eric C. ;
Fainstein, A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (10) :4500-4506