Convergence of logarithmic trace inequalities via generalized Lie-Trotter formulae

被引:8
作者
Furuta, T [1 ]
机构
[1] Tokyo Univ Sci, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
关键词
generalized Lie-Trotter formula; log majorization; logarithmic trace inequality;
D O I
10.1016/j.laa.2004.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall extend logarithmic trace inequalities shown by Bebiano et al. [N. Bebiano, R. Lemos, J. da Providencia, Inequalities for quantum relative entropy, preprint] and also by Hiai and Petz [The Golden-Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993) 153-185], by applying log majorization equivalent to an order preserving operator inequality. We shall generalize the Lie-Trotter formulae, which extend the original Lie-Trotter formula, and the alpha-mean variant of the original Lie-Trotter formula in Hiai-Petz [Linear Algebra Appl. 181 (1993) 153-185]. By using this generalized Lie-Trotter formulae, we shall consider the convergence of certain logarithmic trace inequalities, as some extensions of Bebiano et al. [N. Bebiano, R. Lemos, J. da Providencia, Inequalities for quantum relative entropy, preprint] and Hiai-Petz [The Golden-Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993) 153-185]. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:353 / 372
页数:20
相关论文
共 19 条
[11]  
FURUTA T, 1987, P AM MATH SOC, V101, P85
[12]   EXTENSION OF THE FURUTA INEQUALITY AND ANDO-HIAI LOG-MAJORIZATION [J].
FURUTA, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 219 :139-155
[13]   THE GOLDEN-THOMPSON TRACE INEQUALITY IS COMPLEMENTED [J].
HIAI, F ;
PETZ, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 181 :153-185
[14]  
KAMEI E., 1988, MATH JPN, V33, P883
[15]   A NOTE ON ENTROPY FOR OPERATOR ALGEBRAS [J].
NAKAMURA, M ;
UMEGAKI, H .
PROCEEDINGS OF THE JAPAN ACADEMY, 1961, 37 (03) :149-&
[16]   The best possibility of the grand Furuta inequality [J].
Tanahashi, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) :511-519
[17]   Best possibility of the Furuta inequality [J].
Tanahashi, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (01) :141-146
[18]  
Umegaki H., 1962, Kodai Math. Sem. Rep, V14, P59, DOI DOI 10.2996/KMJ/1138844604
[19]  
Yamazaki T, 1999, MATH INEQUAL APPL, V2, P473