Convergence of logarithmic trace inequalities via generalized Lie-Trotter formulae

被引:8
作者
Furuta, T [1 ]
机构
[1] Tokyo Univ Sci, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
关键词
generalized Lie-Trotter formula; log majorization; logarithmic trace inequality;
D O I
10.1016/j.laa.2004.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall extend logarithmic trace inequalities shown by Bebiano et al. [N. Bebiano, R. Lemos, J. da Providencia, Inequalities for quantum relative entropy, preprint] and also by Hiai and Petz [The Golden-Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993) 153-185], by applying log majorization equivalent to an order preserving operator inequality. We shall generalize the Lie-Trotter formulae, which extend the original Lie-Trotter formula, and the alpha-mean variant of the original Lie-Trotter formula in Hiai-Petz [Linear Algebra Appl. 181 (1993) 153-185]. By using this generalized Lie-Trotter formulae, we shall consider the convergence of certain logarithmic trace inequalities, as some extensions of Bebiano et al. [N. Bebiano, R. Lemos, J. da Providencia, Inequalities for quantum relative entropy, preprint] and Hiai-Petz [The Golden-Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993) 153-185]. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:353 / 372
页数:20
相关论文
共 19 条
[1]  
ANDO T, 1994, LINEAR ALGEBRA APPL, V198, P113
[2]   Inequalities for quantum relative entropy [J].
Bebiano, N ;
Lemos, R ;
da Providência, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 :159-172
[3]  
Fujii J. I., 1989, Math. Japon., V34, P341
[4]   Mean theoretic approach to the grand Furuta inequality [J].
Fujii, M ;
Kamei, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (09) :2751-2756
[5]   A short proof of the best possibility for the grand Furuta inequality [J].
Fujii, M ;
Matsumoto, A ;
Nakamoto, R .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (04) :339-344
[6]  
Fujii M, 2002, MATH INEQUAL APPL, V5, P573
[7]  
FUJII M, 1990, J OPERAT THEOR, V23, P67
[8]  
FUJII M, 2001, SCI MATH JPN ONLINE, V5, P435
[10]   AN ELEMENTARY PROOF OF AN ORDER PRESERVING INEQUALITY [J].
FURUTA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1989, 65 (05) :126-126