Acoustic hologram optimisation using automatic differentiation

被引:55
作者
Fushimi, Tatsuki [1 ,2 ]
Yamamoto, Kenta [1 ,3 ]
Ochiai, Yoichi [1 ,2 ,4 ]
机构
[1] Univ Tsukuba, R&D Ctr Digital Nat, Tsukuba, Ibaraki 3058550, Japan
[2] Univ Tsukuba, Fac Lib Informat & Media Sci, Tsukuba, Ibaraki 3058550, Japan
[3] Univ Tsukuba, Grad Sch Lib Informat & Media Studies, Tsukuba, Ibaraki 3058550, Japan
[4] Pixie Dust Technol Inc, Tokyo 1010061, Japan
关键词
DISPLAY; TACTILE;
D O I
10.1038/s41598-021-91880-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acoustic holograms are the keystone of modern acoustics. They encode three-dimensional acoustic fields in two dimensions, and their quality determines the performance of acoustic systems. Optimisation methods that control only the phase of an acoustic wave are considered inferior to methods that control both the amplitude and phase of the wave. In this paper, we present Diff-PAT, an acoustic hologram optimisation platform with automatic differentiation. We show that in the most fundamental case of optimizing the output amplitude to match the target amplitude; our method with only phase modulation achieves better performance than conventional algorithm with both amplitude and phase modulation. The performance of Diff-PAT was evaluated by randomly generating 1000 sets of up to 32 control points for single-sided arrays and single-axis arrays. This optimisation platform for acoustic hologram can be used in a wide range of applications of PATs without introducing any changes to existing systems that control the PATs. In addition, we applied Diff-PAT to a phase plate and achieved an increase of>8 dB in the peak noise-to-signal ratio of the acoustic hologram.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Automatic contactless injection, transportation, merging, and ejection of droplets with a multifocal point acoustic levitator [J].
Andrade, Marco A. B. ;
Camargo, Thales S. A. ;
Marzo, Asier .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (12)
[2]  
[Anonymous], 2015, arXiv
[3]   Acoustic trapping of microbubbles in complex environments and controlled payload release [J].
Baresch, Diego ;
Garbin, Valeria .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (27) :15490-15496
[4]   Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers [J].
Baresch, Diego ;
Thomas, Jean-Louis ;
Marchiano, Regis .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[5]   Spatially selective manipulation of cells with single-beam acoustical tweezers [J].
Baudoin, Michael ;
Thomas, Jean-Louis ;
Al Sahely, Roudy ;
Gerbedoen, Jean-Claude ;
Gong, Zhixiong ;
Sivery, Aude ;
Matar, Olivier Bou ;
Smagin, Nikolay ;
Favreau, Peter ;
Vlandas, Alexis .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers [J].
Baudoin, Michael ;
Gerbedoen, Jean-Claude ;
Riaud, Antoine ;
Matar, Olivier Bou ;
Smagin, Nikolay ;
Thomas, Jean-Louis .
SCIENCE ADVANCES, 2019, 5 (04)
[7]  
Baydin AG, 2018, J MACH LEARN RES, V18
[8]  
Bradbury J., 2018, JAX: composable transformations of Python+NumPy programs
[9]   Phase Retrieval via Wirtinger Flow: Theory and Algorithms [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Soltanolkotabi, Mahdi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (04) :1985-2007
[10]   Wirtinger Holography for Near-Eye Displays [J].
Chakravarthula, Praneeth ;
Peng, Yifan ;
Kollin, Joel ;
Fuchs, Henry ;
Heide, Felix .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06)