Hardy's inequalities for Sobolev functions

被引:0
作者
Kinnunen, J [1 ]
Martio, O [1 ]
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
maximal function; Sobolev spaces; holder continuity; capacity; Hardy inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fractional maximal function of the gradient gives a pointwise interpretation of Hardy's inequality for functions u is an element of W-0(1,p)(Omega). With mild assumptions on Omega Hardy's inequality holds for a function u is an element of W-1,W-p(Omega) if and only if u is an element of W-0(1,p)(Omega).
引用
收藏
页码:489 / 500
页数:12
相关论文
共 25 条
[1]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[2]  
[Anonymous], 1987, SPECTRAL THEORY DIFF
[3]  
[Anonymous], WEAKLY DIFFERENTIABL
[4]   POINTWISE DIFFERENTIABILITY AND ABSOLUTE CONTINUITY [J].
BAGBY, T ;
ZIEMER, WP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 191 (464) :129-148
[5]  
BOJARSKI B, 1993, STUD MATH, V106, P77
[6]   Remarks on the Hardy inequality [J].
Edmunds, DE ;
Hurri-Syrjanen, R .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1997, 1 (02) :125-137
[7]  
Hajlasz P, 1996, POTENTIAL ANAL, V5, P403
[8]   BOUNDARY-BEHAVIOR OF SOBOLEV MAPPINGS [J].
HAJLASZ, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1145-1148
[9]  
HAJLASZ P, IN PRESS P AM MATH S
[10]  
Hardy G.H., 1952, INEQUALITIES