Locally compact path spaces

被引:0
作者
Niefield, SB [1 ]
机构
[1] Union Coll, Schenectady, NY 12308 USA
关键词
locally compact; compact-open topology; path space;
D O I
10.1007/s10485-004-5012-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the space X-[0,X-1], of continuous maps [0, 1] --> X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T-1-space X, it follows that X-[0,X-1] is locally compact if and only if X is locally compact and totally path-disconnected.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 1955, GRADUATE TEXTS MATH
[2]  
DAY BJ, 1970, PROC CAMB PHILOS S-M, V67, P553
[3]   ON TOPOLOGIES FOR FUNCTION SPACES [J].
FOX, RH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (06) :429-432
[4]  
GIERZ G, 2003, ENCY MATH APPL, V93
[5]   SPECTRAL THEORY OF DISTRIBUTIVE CONTINUOUS LATTICES [J].
HOFMANN, KH ;
LAWSON, JD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 246 (DEC) :285-310
[6]  
HOFMANN KH, 1995, FUND INFORM, V122, P23
[8]   BI-QUOTIENT MAPS AND CARTESIAN PRODUCTS OF QUOTIENT MAPS [J].
MICHAEL, E .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (02) :287-&
[9]  
Niefield S., 2002, THEORY APPL CATEG, V10, P127
[10]   CARTESIANNESS - TOPOLOGICAL-SPACES, UNIFORM-SPACES, AND AFFINE SCHEMES [J].
NIEFIELD, SB .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 23 (02) :147-167