Possible existence of van der Waals macrodimers

被引:4
作者
Han, Jianing [1 ,2 ]
Hu, Chunyan [2 ]
机构
[1] Univ S Alabama, Dept Phys, Mobile, AL 36688 USA
[2] Hollins Univ, Dept Phys, Roanoke, VA 24020 USA
关键词
33.20.Bx; 36.40.Mr; 32.70.Jz; few body interactions; Rydberg atoms; Van der Waals interactions; lasers; molecules; BOSE-EINSTEIN CONDENSATION; RYDBERG BLOCKADE; NOBEL LECTURE; ATOMS; GAS;
D O I
10.1080/00268976.2015.1109150
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Few-body interactions offer the opportunity to study the isolated atom to few-body coupled molecules, and to condensed matter transitions. Atoms in molecules and in condensed matters are coupled by different orders of multipole-multipole interactions, which all stem from different orders of approximations from coulomb interactions between multiple charges. The lowest order multipole-multipole interaction is the dipole-dipole interaction, which is proportional to the size of the dipole. In this article, we use Rydberg atoms, which have more than 1000 times greater electric dipoles than the ground state atoms, to study the van der Waals interaction between few bodies. In addition to the large dipoles, the kinetic energy of the atoms is significantly reduced by reducing the temperature, which makes these interactions stable and observable. Here, we report on the 2D and 3D few-body interaction potentials and possible ways of creating semistable molecules in such an ultracold Rydberg gas with a temperature of approximate to 100 nK. Although we use Rydberg atoms in this article, this calculation can be applied to other states too. The results reported here are useful for studying repulsive van der Waals interactions and creating ultracold molecules. [GRAPHICS]
引用
收藏
页码:637 / 642
页数:6
相关论文
共 50 条
  • [31] Five-body van der Waals interactions
    Han, Jianing
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [32] Van der!Waals interactions of parallel and concentric nanotubes
    Schröder, E
    Hyldgaard, P
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003, 23 (6-8): : 721 - 725
  • [33] SAPT: HYDROGEN BOND OR van der WAALS INTERACTION?
    Oliveira, Boaz G.
    Araujo, Regiane C. M. U.
    QUIMICA NOVA, 2012, 35 (10): : 2002 - 2012
  • [34] Fullerene Van der Waals Oligomers as Electron Traps
    Shubina, Tatyana E.
    Sharapa, Dmitry I.
    Schubert, Christina
    Zahn, Dirk
    Halik, Marcus
    Keller, Paul A.
    Pyne, Stephen G.
    Jennepalli, Sreenu
    Guldi, Dirk M.
    Clark, Timothy
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (31) : 10890 - 10893
  • [35] 70 Years of Crystallographic van der Waals Radii
    Hu Sheng-Zhi
    Xie Zhao-Xiong
    Zhou Zhao-Hui
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (07) : 1795 - 1800
  • [36] Consequences of Overfitting the van der Waals Radii of Ions
    Smith, Madelyn
    Li, Zhen
    Landry, Luke
    Merz, Kenneth M.
    Li, Pengfei
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (07) : 2064 - 2074
  • [37] Van der Waals five-body size-energy universality
    Stipanovic, Petar
    Markic, Leandra Vranjes
    Boronat, Jordi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures
    Erkensten, Daniel
    Brem, Samuel
    Perea-Causin, Rauel
    Malic, Ermin
    PHYSICAL REVIEW MATERIALS, 2022, 6 (09)
  • [39] Long-Range van der Waals Interactions in Density Functional Theory
    J. A. Alonso
    A. Mañanes
    Theoretical Chemistry Accounts, 2007, 117 : 467 - 472
  • [40] Van der Waals interactions among alkali Rydberg atoms with excitonic states
    Zoubi, Hashem
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (18)